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1 Introduction

Let f and g be entire functions. We say that f and g determine the same
covering structure if they are affine equivalent, i.e. there are similarities A
and B such that

f = A ◦ g ◦ B,

and that f and g determine the same dynamical structure if they are affine
conjugate, i.e. there is a similarity A such that

f = A ◦ g ◦ A−1.

We denote by Cf and Df the covering structure and the dynamical struc-
ture, respectively, induced from f . Then, the dynamical structure Df is
smaller than the covering strucure Cf as sets of entire functions. On the
other hand, we know the following theorem.

Theorem 1 Suppose that f is a polynomial of degree N ≥ 2 such that f ′ is
not a Ritt polynomial

(z − d)mP ((z − d)`),

where m and ` are non-negative integers, P is a polynomial, d ∈ C, and
` > 1. If another polynomial g satisfies that g ◦ g ∈ Cf◦f , then g ∈ Df .

This theorem follows from a result by Ritt in [7], or directly from the
following simple lemma.
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Lemma 2 (Lenstra-Schneps lemma [8]) Suppose that P (∗) and Q(∗) are
polynomials with P ◦Q = P ∗ ◦Q∗ and the degrees of Q and Q∗ are the same.
Then there exists a similarity A such that Q∗ = A ◦ Q.

For the sake of reader’s convenience, we include a proof of Theorem 1.

Proof of Theorem 1. We may assume that

g ◦ g = f ◦ f ◦ C

with a suitable similarity C . Then by the Lenstra-Schneps lemma,

g = A ◦ f ◦ C = f ◦ A−1.

Hence letting D = C ◦ A,
f = A ◦ f ◦ D.

Here if D is the identical map, then A is also the identical map, which implies
that f = g. So suppose that D is not the identical map. Set D′(z) = δ and
A′(z) = α, and we have

αδf ′(D(z)) = f ′(z).

First, if D has a fixed point w, then either αδ = 1 and f ′ is a non-constant
automorphic function with respect to D, or f ′(w) = 0. In the latter case,
suppose that w is a zero of f ′ of order k. If k+1 = N , then f ′ has such a form
as c(z−w)N−1, which is a Ritt polynomial. If k +1 < N , then f (k+1)(w) 6= 0
and f (k+1) is non-constant. In particular, αδk+1 = 1, which implies that

f (k+1)(D(z)) = f (k+1)(z),

i.e. f (k+1) is automorphic with respect to D. Hence D has a finite order
` > 1 and so is A.

Thus in any cases, we can find a positive integer m ≤ ` such that

h(z) = (z − w)`−mf ′(z)

is automorphic with respect to D, and hence

h(z) = Q((z − w)`)

with a suitable polynomial Q. Thus f ′ is a Ritt function.
Finally, suppose that D has no fixed points. Then δ = 1 and

αf ′(D(z)) = f ′(z).
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In particular, (f ′′/f ′)(z) is a periodic function which is not identically zero.
Since f ′′/f ′ is a rational function, it should be a constant, which is impossible.

Remark See [6], where Pilgrim shows that the dynamical structure of an
extra-clean Balyi polynomial P is determined by the covering structure of
P ◦ P .

In general, a covering structure Cf corresponds to a complex two-dimensional
family consisting of dynamical structures. An exception is the case of a non-
linear polynomial f with a single critical point. When f(z) = zN , then Cf

contains all

g(z) = c1(z − d)N + c2 (c1 6= 0).

And for every such g, Dg = DPc with a suitable Pc(z) = zN + c. Hence Cf

corresponds to a complex one-dimensional family of dynamical structures,
i.e.

{DPc | c ∈ C}.

In this paper, we show a similar theorem as Theorem 1 for the case of
structurally finite transcendental entire functions.

The author expresses hearty thanks to Professor Kazuya Tohge for his
valuable comments.

2 The main theorem

For the definition of structurally finite entire functions, see [9] and [10]. (Also
see [5] and [11].) Here we recall the explicit representation and the topological
characterization of structurally finite entire functions.

Proposition 3 ([9]) An entire function f(z) is strucuturally finite if and
only if

f ′(z) = P (z)eQ(z)

with suitable polynomials P (z) and Q(z).

Proposition 4 (Cf. [10]) An entire function f(z) is structurally finite if
and only if f is a Speiser function and, applying the resolutions of a finite
number of singularities of f−1 (with respect to a given spider at ∞) to the
covering f : C → C, we have the trivial covering of C by a countable number
of C.
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Here in general, the resolution of a singularity σ of π−1 (which is either a
critical point of π or a logarithmic singurality of π−1) for a Speiser covering
π : R → C of C by a, not necessarily connected, Riemann surface R with
respect to a given spider at ∞, is the operation defined as follows;

1. cut R along all components of π−1(`) tending to σ, where ` is the leg
of the spider ending at the singular value corresponding to σ, and

2. paste each component of the surface obtained in the first operation
along the newly appearing borders over `, if exist, so that π : R → C

induces a holomorphic covering π′ : R′ → C of C by the resulting, not
necessarily connected, Riemann surface R′.

Theorem 5 Suppose that f is a structurally finite transcendental entire
functions such that f ′ is neither a Ritt function

(z − d)mP ((z − d)`)eQ((z−d)`)

nor an exponential function
ecz+d,

where P and Q are polynomials, m and ` are non-negative integers, d ∈ C,
c ∈ C−{0}, and ` > 1. If another entire function g satisfies that g◦g ∈ Cf◦f ,
then g ∈ Df .

Theorem 5 is a generalization of Theorem 2 in [12] (cf. [13]). The proof
below is different from, and simpler than, that of Theorem 2 in [12]. Also
see [1], [2] and [3].

Example 1 Let f(z) = aebz + c with ab 6= 0. Then Cf◦f contains g ◦ g for
every g with the same form as that of f . Recall that every such g ∈ Deλ

,
where eλ(z) = eλz with a suitable λ ∈ C − {0}.

To prove Theorem 5, first we note the following fact, which is an easy
consequence of Proposition 4.

Lemma 6 Such a function g as in Theorem 5 is structurally finite.

Proof. Since f is structurally finite, by applying the resolutions of a finite
number of suitable singularities of (f ◦ f)−1, which corresponds to those of
f−1 for the right f in f ◦f , we have a Speiser covering π : R → C such that π
restricted to Ω is structurally finite for every component Ω of R. We denote
by S the set of all singularities of (f ◦ f)−1 used to obtain R. Let S′ be the
subset of S corresponding to singularities of g−1 for the right g in g ◦ g.
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Now g is a Speiser function, for so is g ◦ g = f ◦ f . Suppose that g were
structurally infinite. Then by applying the resolutions of all singurarities in
S′ to g ◦ g : C → C, we have a Speiser covering π′ : R′ → C such that either
the number of component of R′ is infinite or there is a component Ω′ of R′

such that the covering π′|Ω′ : Ω → C, i.e. the restriction of π′ : R′ → C to
Ω′, has infinitely many singularities of the inverse corresponding to those of
g−1 for the right g in g ◦ g.

In the latter case, we can find, either a logarithmic singularity of (π′|Ω′)−1

corresponding to that of g−1, or infinitely many critical points π′|Ω′ corre-
sponding to those of g, for the right g in g◦g. Hence letting N be the number
of singularities in S − S′, we can obtain a Speiser covering π′′ : R′′ → C by
R′′ having more than N components, by applying either the resolution of
a logarithmic singularity or the resolutions of a suitable number of critical
points such as above.

Thus in any cases, we may assume that R′ has more than N components,
and that the projection π′ restricted to any component of R′ is structurally
infinite. Then, even if we apply resolutions of all the remaining singularities
in S−S′ to π′ : R′ → C, we can find a component Ω′ of R′ which is unchanged,
and hence π′ restricted to Ω′ is structurally infinite. This is a contradiction,
which shows the assertion.

Remark Let ` be an arc either to a critical point of g or to ∞. If `
determines a singularity σ, then ` also determines a singulariy σ′ of (g ◦ g)−1

corresponding to σ of g−1 for the right g in g ◦ g.
Also note that, if the singular value α of g corresponding to σ is a critical

point of g, the singularity of (g ◦ g)−1 corresponding to this critical point of
g for the left g in g ◦ g also disappears when we apply the resolution of σ′ to
g ◦ g : C → C.

Thus as in the case of polynomials, Theorem 5 follows from the lemma
below, whose proof will be given in the next section, .

Lemma 7 (Transcendental Lenstra-Schneps Lemma) Let f and g be
structurally finite transcendental entire functions. Suppose that other struc-
turally finite transcendental entire funcitons f∗ and g∗ satisfy the equation

f ◦ g = f∗ ◦ g∗.

Then there exists a similarity A such that g = A◦g∗ (and hence f = f∗◦A−1).

Proof of Theorem 5. We may assme that

g ◦ g = f ◦ f ◦ C
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with a suitable similarity C . Then by Lemmas 6 and 7, there is a similarity
A such that

g = A ◦ f ◦ C = f ◦ A−1.

Hence letting D = C ◦ A,
f = A ◦ f ◦ D.

Here if D is the identical map, then f = g as before. So suppose that D is
not the identical map. If D has a fixed point w, then by Proposition 3 we
can conclude as before that f ′ is a Ritt function. If D has no fixed points,
(f ′′/f ′)(z) is a periodic function not identically zero. On the other hand,
f ′′/f ′ is a rational function again by Proposition 3. Hence it should be a
constant, and hence f ′ is an exponential function. Thus we conclude the
assertion.

Example 2 If one of f, f∗, g, and g∗ is structurally infinite, then the asser-
tion of the above lemma does not necessarily hold. A typical example is a
logarithmic lift:

f(z) = ez, f∗(z) = zez, g(z) = z + ez, g∗(z) = ez.

Another typical example is

f(z) = ez2

, f∗(z) = e1−z2

, g(z) = sin z, g∗(z) = cos z.

Here g and g∗ determine the same covering structure, but the assertion of
the lemma does not hold.

On the other hand, we can show the following proposition by the same
argument as in the proof of Lemma 6.

Proposition 8 Suppose that f and g are structurally finite, that g∗ is tran-
scendental, and that f ◦ g = f∗ ◦ g∗ with another entire function f∗. Then
f∗ is structurally finite.

Finally, professor Masashi Kisaka notified the author the following corol-
lary of the transcendental Lenstra-Schneps Lemma.

Corollary 1 Let f and g be structurally finite transcendental entire func-
tions. Suppose that f ◦ g = g ◦ f . Then g = A ◦ f and also f = g ◦A−1 with
a suitable similarity A.

Moreover suppose that neither f nor g has the form∫ z

d

P ((t − d)`)eQ((t−d)`)dt + d

with a suitable integer ` > 1, polynomials P and Q, and d ∈ C. Then f = g.
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Proof. In this case, D = A−1 in the proof of Theorem 5. Hence if D has
a fixed point, f should have the form as in Corollary 1. If D has no fixed
points, then f(z) should be written as aebz + c, but then f(z +β) 6= f(z)+β
for every β 6= 0.

Corollary 2 Let f and g be structurally finite transcendental entire func-
tions. Suppose that f ◦ g = g ◦ f . Then the Julia sets of f and g coincide
with each other.

Proof. Even if f 6= g, g = A ◦ f = f ◦A with a similarity A of a finite order
`. Hence the `-th iterations of f and g coincide with each other (cf. [4]).

3 Proof of the transcendental Lenstra-Schneps

Lemma

First by Proposition 3, we can write

(f (∗))′(z) = P (∗)(z) exp(Q(∗)(z)), (g(∗))′(z) = R(∗)(z) exp(S(∗)(z))

with suitable polynomials P (∗), Q(∗), R(∗), and S(∗). Here we may assume
that Q(∗)(0) = 0 and S(∗)(0) = 0. Let p(∗), q(∗), r(∗), and s(∗) be the degrees
of P (∗), Q(∗), R(∗), and S(∗), respectively. Then the assumption implies that
q(∗) and s(∗) are positive. Also Proposition 4 gives the following

Lemma 9 q = q∗.

Proof. Apply the resolutions of s∗ logarithmic singularities of π−1, corre-
sponding to those of (g∗)−1, to the covering

π = f ◦ g = f∗ ◦ g∗ : C → C.

Then the resulting surface R′ contains infinite number of components Ω′ such
that each Ω′ is biholomorphic to C and the covering π′|Ω′ : Ω′ → C induced
from π has exactly q∗ logarithmic singularities of the inverse. Further, apply
the resolutions of at most s other logarithmic singularities of π−1, corre-
sponding to those of g−1 but not of (g∗)−1, to the covering π′ : R′ → C, if
exist. Then the resulting surface R′′ also contains infinite number of com-
ponents Ω′′, each of which coincides with some component Ω′ of R′, such
that the covering π′′|Ω′′ : Ω′′ → C induced from π′ has exactly q logarithmic
singularities of the inverse, which implies that q = q∗.
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Next, since

f ′(g(z))g′(z) = (f∗)′(g∗(z))(g∗)′(z), (1)

and since the orders of g and g∗ are finite, we can find a polynomial T such
that

Q(g(z)) + S(z) −Q∗(g∗(z))− S∗(z) = T (z). (2)

Lemma 10 r = r∗, s = s∗, and bs = b∗s, where we set

S(∗)(z) = b
(∗)
s(∗)z

s(∗)
+ · · · b(∗)

1 z.

Proof. First recall that |g(∗)| has a growth estimate

|g(∗)(z)| = (γ(∗) + o(1))|z|r(∗)−s(∗)+1 exp(Re b
(∗)
s(∗)z

s(∗)
), (3)

with a positive constant γ(∗) depending only on g(∗), as z → ∞ along a ray
in the divergence sectors of g(∗) (See for instance, [11] Lemma 4). Here the

divergence sectors Π
(∗)
j of g(∗) is the maximal open set of rays from the origin

along which |g(∗)| tends to +∞:

Π
(∗)
j =

{∣∣∣∣arg z − −θ(∗) + 2πj

s(∗)

∣∣∣∣ <
π

s(∗)

}
(j = 0, · · · , s(∗) − 1),

where we set θ(∗) = arg b
(∗)
s(∗) .

Here by the equation (2), the divergence sectors of g and those of g∗

should be the same, which means that s = s∗ and θ = θ∗. Then the equation
(3) gives that r = r∗, and |bs| = |b∗s|, which implies the assertion.

Set Q(∗)(z) = a
(∗)
q zq +· · · a(∗)

1 z, and take a constant α such that a∗
q = αqaq.

Lemma 11 |g′(z)/α(g∗)′(z)| tends to 1 as z → ∞ along any ray in the
divergence sectors.

Proof. Since |g(z)/αg∗(z)| tends to 1 as z → ∞ along any ray ` in the
divergence sectors by the equation (2), |Q′(g(z))/(Q∗)′((g∗(z))| tends to 1/|α|
(including the case that q = 1), as z → ∞ along `.

Also by differentiating the equation (2), we see that |Q′(g(z))g′(z)/ ((Q∗)′((g∗(z))(g∗)′(z)) |
tends to 1 as z → ∞ along `, which gives the assertion.

Lemma 12 S(z) equals to S∗(z).
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Proof. By Proposition 3 and Lemma 10, we see that

|g′(z)|
|α(g∗)′(z)|e

−(ReS(z)−Re S∗(z))

tends to a non-zero constant as z → ∞ along any ray in the divergence
sectors.

Suppose that there is a k such that bk 6= b∗k, and let k0 be the maximal
one among such indice. (Note that s > k0 ≥ 1 by Lemma 10.) Then we can
find a ray ` in the divergence sectors along which

Re (bk0 − b∗k0
)zk0 → +∞

as z → ∞. Actually, rays from the origin with angle in suitable k open inter-
vals, the total length of which is π, in [0, 2π) satisfy this condition, and since
k0 6= s, the set of all such rays can not be disjoint from the divergence sectors.
But |g′(z)/α(g∗)′(z)| → +∞ as z → ∞ along ever ray in the intersection,
which contradicts to Lemma 11.

Finally, by Lemma 12, we can write as

g′(z) − α(g∗)′(z) = (R(z) − αR∗(z))eS(z).

If R(z) − αR∗(z) is not identically 0, then |g(z) − αg∗(z)| grows not slower
than |z|−s exp(Re S(z)) as z → ∞ along any ray ` in the divergence sec-
tors. Hence, if R(z) − αR∗(z) were not identically 0 for every constant α
such that a∗

q = αqaq, then Q(g(z)) − Q∗(g∗(z)) should grow not slower than
|z|−qs exp(qRe bsz

s) as z → ∞ along `. But this contradicts to the equation
(2), which implies that R(z) − αR∗(z) is identically 0 for some constant α
such that a∗

q = αqaq. Then g′ = α(g∗)′, which proves the transcendental
Lenstra-Schneps lemma.
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