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Abstract. By using norm estimates of the pre-Schwarzian derivatives for certain ana-
lytic functions de�ned by a nonlinear integral transform, we shall give several interesting
geometric properties of the integral transform.

1. Introduction

Let H denote the class of all analytic functions in the open unit disk D = fjzj < 1g
and A denote the class of functions f 2 H normalized by f(0) = 0 = f 0(0)� 1. Also let
S denote the class of all univalent functions in A: For 0 � � < 1, let S� and K denote
the familiar classes of functions in A that are starlike (with respect to origin) and convex,
respectively. As is well known (cf. [4]), these two classes are analytically characterized,
respectively, by

f 2 K , Re

�
1 +

zf 00(z)

f 0(z)

�
> 0; z 2 D ;

and

f 2 S� , Re

�
zf 0(z)

f(z)

�
> 0; z 2 D :

Note that f 2 S� , J [f ] 2 K; where J [f ] denotes the Alexander transform [1] of f 2 A
de�ned by

J [f ](z) =

Z z

0

f(�)

�
d� =

Z
1

0

f(tz)
dt

t
:

In 1960, Biernacki claimed that f 2 S implies J [f ] 2 S, but this turned out to be
wrong (see [4, Theorem 8.11]). This means that the Alexander integral operator J does
not preserve the class S.
A function f 2 A is said to be close-to-convex if there exists a (not necessarily normal-

ized) convex function g such that

Re

�
f 0(z)

g0(z)

�
> 0; z 2 D :

We shall denote by C the class of close-to-convex functions in D . It is well known that a
close-to-convex function is univalent (cf. [4]).
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In [10], Y. J. Kim and Merkes considered the nonlinear integral transform J� de�ned
by

J�[f ](z) =

Z z

0

�
f(�)

�

��

d�

for complex numbers � and for functions f in the class

ZF = ff 2 A : f(z) 6= 0 for all 0 < jzj < 1g
and showed that

J�(S) = fJ�[f ] : f 2 Sg � S
when j�j � 1=4: Up to now, the best constant is not known for this reult. Also, Merkes
[12] proved that, for � 2 C with j�j � 1=2; the inequality

J�(S�) � S
holds, where 1=2 is sharp. Note also that the authors has recentely proved in [7] that
J�(S�) � S precisely when either j�j � 1=2 or � 2 [1=2; 3=2]: More generally, for a given
constant � > 0; it may be interesting to �nd a subclass F of A such that J�(F) � S
for all � 2 C with j�j � �: The main purpose of this note is to give such classes F in a
concrete way.
Let f : D ! C be analytic and locally univalent. The pre-Schwarzian derivative Tf of

f is de�ned by

Tf (z) =
f 00(z)

f 0(z)
:

Also, with respect to the Hornich operation [5], the quantity

kfk = sup
z2D

(1� jzj2)jTf(z)j

can be regarded as a norm of the space of uniformly locally univalent analytic functions f
in D (see [7] for details). Here, an analytic function f on D is said to be uniformly locally

univalent if f is univalent on each hyperbolic disk in D with a �xed radius. Note, in fact,
that f is uniformly locally univalent if and only if kfk <1 (see [17]). In connection with
the above norm, the following result is important to note.

Theorem A. Let f be analytic and locally univalent in D : Then

(i) if kfk � 1 then f is univalent, and

(ii) if kfk < 2 then f is bounded.

The constants are sharp.

The part (i) is due to Becker [2] and sharpness of the constant 1 is due to Becker and
Pommerenke [3]. The part (ii) is obvious (see [9, Corollary 2.4]). Note also that, recently,
Kari and Per Hag [6] gave a necessary and suÆcient condition for f 2 S to have a John
disk as the image in terms of the pre-Schwarzian derivative of f: Also, the norm estimates
for typical subclasses of univalent functions are investigated by many authors ([18], [9],
[8], and so on).
In the present paper, �rst we estimate the norm of J�[f ] for a function f in a subclass

of A and then make use of Theorem A to obtain boundedness and univalence of the
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nonlinear integral transform J�[f ] of f: We give also conditions for J�[f ] to be in typical
subclasses of univalent functions such as S�;K and C:

2. Main Results

For a constant 0 < � � 1; consider the class U(�) de�ned by

U(�) = ff 2 A : jf 0(z)(z=f(z))2 � 1j < �; z 2 D g:
The class U(�) looks natural through the transformation F (�) = 1=f(1=�); where j�j > 1:
In fact, F 0(1=z) = f 0(z)(z=f(z))2 and therefore, f 2 U(�) if and only if jF 0(�) � 1j < �
in j�j > 1: Note that f 2 U(�) has no zeros in D

� = D n f0g; namely, U(�) � ZF ;
because z2f 0(z)=f(z)2 is analytic in D : It is known [16] that U(�) � S for 0 < � � 1 and
that every f 2 U(�) admits a K-quasiconformal extension to the Riemann sphere when
K = (1 + �)=(1 � �) < 1 (see [11]). In particular, the Bieberbach theorem yields that
ja2j = jf 00(0)=2j � 2 for f 2 U(1): Set

U�(�) = ff 2 U(�) : jf 00(0)j � 2�g
for � � 0: Recently, the class U(�) and its related classes have been studied extensively
by M. Obradovi�c and Ponnusamy [14]. Furthermore, it is shown in [15] that U0(�) � S�

for 0 < � � 1=
p
2; and that, for 1=

p
2 < � � 1; every function in U0(�) is starlike in

jzj < 1=
p
2�:

Theorem 2.1. Let �; � and � be non-negative numbers with � = � + � � 1: For a

function f 2 U�(�); one obtains the estimate

kJ�[f ]k � 2j�j�
1 +

p
1� �2

(2.2)

for every � 2 C ; where equality holds precisely when f(z) = z=(1 � az) with jaj = �: In

particular, J�[f ] 2 S whenever j�j � (1 +
p
1� �2)=2�:

Proof. Taking a logarithmic di�erentiation, we obtain J�[f ] = �J [f ] and thus

kJ�[f ]k = j�jkJ [f ]k:
Hence it suÆces to show the inequality (2.2) in the case � = 1: Let f(z) = z + a2z

2 + � � �
be in U�(�) and set F = J [f ]: Since f 0(z)(z=f(z))2 = 1+(a3+3a2

2
)z2+ � � � ; we can write

f 0(z)

�
z

f(z)

�2

= 1 + �z2!(z);

where ! is an analytic function in D with j!(z)j � 1: If we set g(z) = 1=f(z)� 1=z; then
we see that g is analytic in D and g(0) = �a2: Using the identity

g0(z) = � f 0(z)

f 2(z)
+

1

z2
= ��!(z);

we get the representation

z

f(z)
= 1� a2z � �z2

Z
1

0

!(tz) dt;(2.3)



4 Yong Chan Kim, S. Ponnusamy and Toshiyuki Sugawa

of f: (Conversely, for an arbitrary analytic function ! : D ! C with j!(z)j � 1; the
function f given by (2.3) belongs to the class U(�) as long as the right-hand side of (2.3)
does not vanish in D : The requirement that f 2 ZF is guaranteed by ja2j � � = 1� �:)
Since ja2j+ � � 1; by (2.3), we get���� z

f(z)
� 1

���� � ja2zj + �jzj2 < �:

This implies that F 0(z) = f(z)=z is subordinate to the function p(z) = 1=(1 + �z): By
the Schwarz-Pick lemma, we easily obtain

kFk � sup
z2D

(1� jzj2)
����p

0(z)

p(z)

���� ;
see [9, Theorem 4.1]. Since

p0(z)

p(z)
= � �

1 + �z
;

a computation shows that

sup
z2D

(1� jzj2)
����p

0(z)

p(z)

���� = � sup
0<t<1

1� t2

1� �t
=

2�

1 +
p
1� �2

;

where the supremum is attained by z = t = �=(1 +
p
1� �2): (This calculation has been

done in [8, Lemma 4.2] in a general situation.) Thus inequality (2.2) follows. The case of
equality can be easily analyzed in the above.
Because kJ�[f ]k � 2j�j�=(1 +

p
1� �2) � 1, Becker's univalence criterion (Theorem

A) yields the second assertion.

Letting a2 = 0 in Theorem 2.1, we obtain the following corollary.

Corollary 2.4. Let 0 < � � 1, and � 2 C with j�j � (1 +
p
1� �2)=2�. Then,

J�(U0(�)) � S holds.

We may rewrite the last corollary in the following equivalent form.

Corollary 2.5. For � � 0, set F� = U0(4�=(1 + 4�2)): Then J�(F�) � S holds for all

� 2 C with j�j � �:

When � is real, we can deduce a stronger conclusion.

Theorem 2.6. Let f be a function in U1��(�) for some � 2 (0; 1]: Then J�[f ] is a close-

to-convex function for each � 2 [�1; 1]:

Proof. By (2.3), we have

Re
z

f(z)
> 1� (ja2j+ �) � 0; z 2 D :

Therefore, both J�1[f ] and J [f ] = J1[f ] are close-to-convex functions. Convexity of
the class C with respect to the Hornich operation (cf. [13]) implies that J�[f ] 2 C for
� 2 [�1; 1]:
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Next, we consider a function f 2 A satisfying the condition jf 00(z)=2j � �; z 2 D ; for
a positive constant �: As we see below, if � � 1=2; then f is starlike, and thus, univalent.
Otherwise, however, f may not be locally univalent as the example f(z) = z+�z2 shows.

Theorem 2.7. Let f be a function in A such that jf 00(z)j � 2�; z 2 D ; holds for some

constant 0 < � � 1: Then f 2 ZF and the sharp inequality

kJ�[f ]k � 2j�j�
1 +

p
1� �2

(2.8)

holds for each � 2 C : If, in addition, � < 1; then equality holds above precisely when

f(z) = z + az2 for a constant a with jaj = �: Moreover,

(i) J�[f ] 2 S if j�j � (1 +
p
1� �2)=2�

(ii) J�[f ] 2 K if j�j � (1� �)=�:

Note that (1 +
p
1� �2)=2� > (1� �)=� holds for all � > 0:

Proof. We may write f 00(z) = 2�!(z); where j!j � 1: By integration, we have

f 0(z) = 1 + 2�z

Z
1

0

!(tz) dt and f(z) = z + 2�z2
Z

1

0

(1� t)!(tz) dt:

Since j R 1

0
(1� t)!(tz) dtj � 1=2; we conclude that jf(z)=z � 1j � �jzj < 1: In particular,

f 2 ZF : Furthermore,

zf 0(z)

f(z)
� 1 =

2�z
R
1

0
t!(tz) dt

1 + 2�z
R
1

0
(1� t)!(tz) dt

;

and hence, ����zf
0(z)

f(z)
� 1

���� � �jzj
1� �jzj :

In particular, it turns out that f is starlike when � � 1=2: Since

1 +
z(J�[f ])

00(z)

(J�[f ])0(z)
= 1 + �

�
zf 0(z)

f(z)
� 1

�
;

we obtain the convexity of J�[f ] under the assumption j�j�=(1� �) � 1: In addition, we
have the estimate

kJ [f ]k � sup
0<t<1

�
1� t2

1� �t
= 2

1�
p
1� �2

�
=

2�

1 +
p
1� �2

in the same way as in the proof of Theorem 2.1, where the supremum is taken by t0 =
�=(1 +

p
1� �2): When � < 1; this point is contained in D : Therefore, we can examine

the equality case through the above proof. The univalence of J�[f ] under the hypothesis

j�j � (1+
p
1� �2)=2� follows from Theorem A (i) because kJ�[f ]k = j�j kJ [f ]k � 1:
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