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Abstract. The main aim in the present article is to give suÆcient conditions for a
locally univalent meromorphic function in the unit disk to have speci�c geometric prop-
erties such as starlikeness and convexity in terms of the Schwarzian derivative. To this
end, we establish estimates of fundamental solutions to an ODE of the form 2y00+'y = 0
in the unit disk, where ' is an analytic function satisfying a given growth condition. As
by-products, growth and distortion estimates are derived for a locally univalent strongly
normalized analytic function f in the unit disk with a prescribed growth of the Schwarzian
derivative.

1. Preliminaries and main results

We denote byM the set of meromorphic functions f in the unit disk D = fz 2 C : jzj <
1g with f(0) = 0; f 0(0) = 1: For a complex number c; we set M(c) = ff 2 M : f 00(0) =
2cg: For c 2 C and for an analytic function ' in the unit disk, there exists the unique
function f 2 M(c) such that Sf = '; where Sf stands for the Schwarzian derivative of
f :

Sf =

�
f 00

f 0

�
0

� 1

2

�
f 00

f 0

�2

:

Indeed, the existence of such a function f is explained by the well-known relationship
between the Schwarzian derivative and the linear second-order di�erential equation which
is sometimes called complex oscillation:

2y00 + 'y = 0 in D :(1.1)

Let y0 and y1 be analytic solutions to (1.1) with the initial conditions y0(0) = 1; y00(0) =
0; y1(0) = 0 and y01(0) = 1: These are called the fundamental solutions to the equation
(1.1). It is easy to see that the Wronskian satis�es the identity

y0y
0

1 � y00y1 = 1:(1.2)

The function f = y1=(y0 � cy1) thus satis�es f(0) = 0; f 0(0) = 1; f 00(0) = 2c and Sf = ':
Uniqueness of such a function follows from the fact that g = L Æ f for some M�obius
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transformation L if two functions f and g in M satisfy Sf = Sg: In what follows, we
sometimes write f';c for this function f: Note, in particular, that the relation

f';c =
f';0

1� cf';0

holds. Hence, f';c is univalent in D if and only if so is f';0: Notice that the function
f = f';0 of the simple form y1=y0 satis�es the unexpected condition f 00(0) = 0; which has
been missed by some authors (cf. [7]). Also, f';c is analytic, namely, it has no poles in
D ; precisely when c 2 K('); where K(') is the set of inversion of omitted values of f';0;
namely,

K(') = fc 2 C : 1=c =2 f';0(D )g:
Although it is known as the Koebe one-quarter theorem that omitted values w of a
univalent analytic function in the unit disk satisfy jwj � 1=4; a stronger assertion can be
said for K('): If f';0 is a univalent meromorphic function in D ; then jcj � 2 for c 2 K(');
in other words, omitted values w of the univalent function f';0 satisfy jwj � 1=2: Indeed,
in view of the expansion f';c(z) = z+ cz2+ � � � ; the above inequality immediately follows
from Bieberbach's theorem on the second coeÆcient of a normalized univalent function
in the unit disk.
Let A(x); 0 � x < 1; be a locally Lipschitz, non-decreasing, positive function. We call

such A(x) as above a weight function. An important example is given by

A(x) = C(1� x2)��;(1.3)

where C and � are non-negative constants, or a linear combination of such functions.
We now consider the linear second-order ordinary di�erential equations 2y00 = �Ay on

the interval [0; 1); where y00 = d2y=dx2: It is well known that the equations have unique
solutions for any initial data at x = 0: (For basic knowledge of the theory of ordinary
di�erential equations, we refer the reader to Walter's book [13].) Let U0; U1; V0 and V1 be
the functions on [0; 1) determined by

2U0
00 = AU0; U0(0) = 1; U0

0(0) = 0;

2U1
00 = AU1; U1(0) = 0; U1

0(0) = 1;(1.4)

2V0
00 = �AV0; V0(0) = 1; V0

0(0) = 0;

2V1
00 = �AV1; V1(0) = 0; V1

0(0) = 1:

When we need to indicate the weight function A; we write, for example, U0(x;A) = U0(x):
As we see later, the inequalities U0 > 0 and U0

0 > 0 hold on the interval [0; 1) for any
weight function A: In the sequel, we will write, for example, U0(1) = limx!1� U0(x) and
U 0

0(1) = limx!1� U
0

0(x) whenever these limits exist.
In connection with univalent functions, Nehari [12] proved the following result.

Theorem A. Suppose that a weight function A has the properties:

(i) A(x)(1� x2)2 is non-increasing in 0 � x < 1; and
(ii) the solution V0(x;A) is positive for 0 � x < 1:

Then, the condition jSf(z)j � A(jzj) for a function f 2 M implies univalence of f in D :
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On the other hand, the Kraus-Nehari theorem states that jSf (z)j � 6(1� jzj2)�2 holds
for any univalent meromorphic function f in D : Therefore, it may be natural to impose
the condition (i) on the weight function A(x): We, however, do not need it in the sequel.
The following are typical cases where (i) and (ii) hold and sharp multipliers are obtained

(see also [2]):

(0) For A(x) = �2=2; one has V0(x) = cos(�x=2):
(1) For A(x) = 4(1� x2)�1; one has V0(x) = 1� x2:
(2) For A(x) = 2(1� x2)�2; one has V0(x) =

p
1� x2:

Here, all the multipliers �2=2; 4 and 2 cannot be replaced by larger ones, respectively.
A function f 2 M is called starlike (respectively, convex) if f is univalent analytic

and the image f(D ) is starlike with respect to the origin (respectively, convex). Since
starlikeness and convexity are not preserved by M�obius transformations, unlike univalence,
starlikeness (convexity) of f';0 does not necessarily imply that of f';c for c 2 K('): It is
well known that f 2 M is starlike if and only if Re (zf 0(z)=f(z)) > 0 and that f 2 M
is convex if and only if Re (1 + zf 00(z)=f 0(z)) > 0: Furthermore, for a constant � 2 [0; 1);
f 2 M is called starlike of order � if Re (zf 0(z)=f(z)) > �: It is known as the Strohh�acker
theorem that a convex function is starlike of order 1=2; where the number 1=2 is sharp
(see [5, p. 251]).
In the present article, we give suÆcient conditions for a function inM(c) to be starlike

of order 1=2 or convex in a similar way to Theorem A.

Theorem 1.1. Let A be a weight function and k be a non-negative number. Suppose that

the functions U0 and U1 de�ned by (1.4) satisfy the inequality

2

Z 1

0

U0
0(x)U1(x)dx + kU1(1)

2 � 1:(1.5)

If a function f belongs to M(c) for some c with jcj � k and satis�es the inequality

jSf(z)j � A(jzj) in jzj < 1; then f is starlike of order 1=2: Moreover, if A extends to an

analytic function in the unit disk in such a way that jA(z)j � A(jzj) holds in jzj < 1 and if

equality holds in (1.5), then this condition is sharp, namely, for each number " > 0; there
exists a function f 2 M(�k) which is not starlike of order 1=2 but satis�es the condition

jSf(z)j � (1 + ")A(jzj) in jzj < 1:

As the special case when A is a positive constant and k = 0; we obtain the following
result.

Corollary 1.2. Let C0 = 2�2
0 � 2:37036; where �0 is the unique positive root of the

equation sinh(2�) = 4�: If a function f 2 M(0) satis�es the inequality jSf(z)j � C0 in

jzj < 1; then f is a starlike function of order 1=2: The constant C0 is sharp.

The sharp constant for starlikeness is unknown. At least, Gabriel [7] proved that the
inequality jSf(z)j � C 0

0 in jzj < 1 implies starlikeness of f 2 M(0); where C 0

0 = 2� 00
2 �

2:71707 and � 00 is the unique root of the equation 2� = tan � in 0 < � < �=2: On the other
hand, Chiang [3, Proposition 4] showed that C 0

0 cannot be replaced by a larger number
than C 00

0 = (�2 + �2)=2 � 4:6351; where � and � are the smallest positive roots of the
equations � tan � = �1 and � tanh � = 1: By some experiments, it is likely that C 00

0 is the
best possible constant.
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Theorem 1.3. Let A be a weight function and k be a non-negative number. Suppose that

the functions V0 and V1 given by (1.4) satisfy the inequalities V0(x) � kV1(x) > 0; 0 �
x < 1; and

� lim
x!1�

V0
0(x)� kV1

0(x)

V0(x)� kV1(x)
� 1:(1.6)

If a function f belongs to M(c) for some c with jcj � k and satis�es the inequality

jSf(z)j � A(jzj) in jzj < 1; then jzf 00(z)=f 0(z)j < 1 in jzj < 1 and, in particular, f is

convex. Moreover, if A extends to an analytic function in the unit disk in such a way that

jA(z)j � A(jzj) holds in jzj < 1 and if equality holds in (1.6), then this condition is sharp,

namely, for each number " > 0; there exists a function f 2 M(k) for which the inequality

jzf 00(z)=f 0(z)j < 1 fails to hold in jzj < 1 but jSf(z)j � (1 + ")A(jzj) in jzj < 1:

As we will see in the proof of Lemma 2.4 below, the limit in (1.6) always exists in
[�1;�k]: See also Proposition 4.3 for additional information.
As a corollary of the theorem, we obtain an improvement of a result of Chiang [3].

Corollary 1.4. Let C1 = 2�2
1 � 0:853526; where �1 is the unique root of the equation

2� tan� = 1 in 0 < � < �=2: If a function f 2 M(0) satis�es the inequality jSf(z)j � C1

in jzj < 1; then jzf 00(z)=f 0(z)j < 1 in jzj < 1 and, in particular, f is convex. The constant

C1 is sharp.

The above C1 is smaller than the sharp constant ~C1 for convexity. More precisely,
C1 < ~C1 and ~C1 is the possible largest constant C such that the condition jSf(z)j � C in
jzj < 1 implies convexity of f for functions f 2 M(0): Chiang showed in [3, Propositoin
4] the inequality ~C1 � C 0

1 = 2� 01
2 � 1:19105; where � 01 is the unique positive root of the

equation � tanh� = 1=2:

2. Growth theorems

For the proof of our main results, we need some growth theorems for solutions to
the associated complex oscillation, or related functions to them. We relied heavily upon
comparison theorems in the theory of ordinary di�erential equations with real coeÆcients,
while Chiang [3] relied on Gronwall's inequality.
For convenience, we de�ne the new function ~V for a given continuous function V in

[0; 1) by ~V (x) = V (x) for 0 � x < x0 and ~V (x) = 0 for x � x0; where x0 is the smallest
positive zero of V (x) (if there is no such zero, set x0 = 1). By using this notation, we
state comparison theorems in the following form. As will be indicated in the proof, some
of those inequalities are essentially known.

Lemma 2.1. Let A be a weight function and let an analytic function ' in D be majorized

by A; namely, j'(z)j � A(jzj) in jzj < 1: The solutions y0 and y1 to the di�erential

equation 2y00 + 'y = 0 in D with the initial conditions y0(0) = 1; y00(0) = 0; y1(0) =
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0; y01(0) = 1 then satisfy the inequalities

~V0(jzj) �jy0(z)j � U0(jzj);
jy00(z)j � U0

0(jzj);
~V1(jzj) �jy1(z)j � U1(jzj);

jy01(z)j � U1
0(jzj)

for z 2 D ; where U0; U1; V0; V1 are functions given in (1.4). Nontrivial equality holds at

z0 in any of these inequalities if and only if A(t) = j'(tz0=jz0j)j holds in 0 < t � jz0j:

Proof. The inequalities jyj(z)j � Uj(jzj); j = 0; 1; follow from the same argument as in

the proof of Lemma 8 in [6]. On the other hand, the inequalities ~Vj(jzj) � jyj(z)j; j = 0; 1;
can be deduced by Lemmas 1 and 2 in [4] (see also [4, (2.4)]).
We next show the inequality jy0j(z)j � Uj

0(jzj) for j = 0; 1: For a moment, we assume
the inequality j'(0)j < A(0) to hold. Set w(t) = yj(t�); 0 � t < 1; for a point � 2 @D :

Put �(t) = �2
R t

0
'(s�)ds=2 and Q(t) =

R t

0
A(s)ds=2: Then j�(t) � �(s)j � Q(t) � Q(s)

holds for 0 < s < t: Since 2w00(t) + �2'(t�)w(t) = 0; by integration by parts, we obtain

w0(t) =

Z t

0

w00(s)ds+ w0(0)

= �
Z t

0

�0(s)w(s)ds+ w0(0)

=

Z t

0

(�(s)� �(t))w0(s)ds� �(t)w(0) + w0(0):

Therefore,

jw0(t)j �
Z t

0

(Q(t)�Q(s))jw0(s)jds+Q(t)w(0) + w0(0):

On the other hand, by the same computation, we obtain

Uj
0(t) =

Z t

0

(Q(t)�Q(s))Uj
0(s)ds+Q(t)Uj(0) + Uj

0(0):

If we set u(t) = jw0(t)j � Uj
0(t); then we obtain the integral inequality

u(t) �
Z t

0

(Q(t)�Q(s))u(s)ds(2.1)

because Uj(0) = w(0) and Uj
0(0) = w0(0): Since jjw0j0(t)j � jw00(t)j (see [4, Lemma 2]),

we see that u0(0) � jw00(0)j � Uj
00(0) = (j'(0)j �A(0))w(0): In particular, u0(0) < 0 when

j = 0 by the assumption j'(0)j < A(0): When j = 1; jw0j0(0) = 0 and thus u0(0) = 0: In
this case, we have jw0(t)j = 1�Re (�2'(0))t2=4+O(t3) and Uj

0(t) = 1+A(0)t2=4+O(t3)
as t! 0: Therefore, u00(0) = �(Re (�2'(0)) + A(0))=2 < 0: In this way, at any event, we
observe that u(t) < 0 for suÆciently small t > 0: We suppose now that u(t) < 0 in (0; t0)
but u(t0) = 0 for some t0 2 (0; 1): By (2.1), we obtain

0 = u(t0) �
Z t0

0

(Q(t0)�Q(s))u(s)ds < 0;
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which is impossible. Therefore, the function u(t) must be negative throughout 0 < t < 1;
and hence, jy0j(t�)j = jw0(t)j < Uj

0(t) holds for any 0 < t < 1 and � 2 @D under the
assumption j'(0)j < A(0):
The general case follows from an approximation argument. Indeed, for " > 0; we

consider the solution yj;" to the equation 2y00 + (1 � ")'y = 0 with the same initial
conditions as yj: Then the previous assertion implies jy0j;"(z)j < Uj

0(jzj): On the other
hand, as is well known, y0j;"(z) tends to y

0

j(z) as "! 0: Therefore, by taking the limit, we
obtain the inequality jy0j(z)j � Uj

0(jzj) for each z 2 D :
Equality conditions can be deduced easily from the above proof. For instance, if

jy0j(z0)j = Uj(jz0j) holds at some point z0 6= 0; then the integral inequality (2.1) leads
to the required conclusion.

As an immediate consequence, we obtain the following result, which may be of inde-
pendent interest. Note that the special cases when A(x) = 2t=(1�x2)2 and A(x) = �2t=2
for 0 � t � 1 were given in [4].

Corollary 2.2. Let A be a weight function. If a function f 2 M(0) satis�es the inequality
jSf(z)j � A(jzj) in jzj < 1; then

U0(jzj)�2 �jf 0(z)j � ~V0(jzj)�2;

jf(z)j � V1(jzj)
~V0(jzj)

;

in jzj < 1 and the image of the unit disk under f contains the disk fjwj < U1(1)=U0(1)g:
Moreover, if f is univalent in jzj < r; then U1(jzj)=U0(jzj) � jf(z)j holds in jzj < r:
These inequalities are sharp if A extends to an analytic function in the unit disk so that

jA(z)j � A(jzj):

Proof. Let ' = Sf and let y0 and y1 be fundamental solutions to the equation 2y00+'y = 0:
Then, as was seen in Section 1, f = y1=y0 and f 0 = 1=y20: Lemma 2.1 now implies the �rst
inequality. By integration, we obtain the second one.
To deduce the covering estimate, we follow the argument used in the proof of Corollary

2.4 in [10]. Consider the set W of omitted values of f in the disk jzj < r; namely,
C nW = ff(z) : jzj < rg for 0 < r < 1: Take a point w0 inW with the minimum modulus
and denote by  the connected component of the inverse image of the line segment [0; w0)
under f which contains the origin. Since  does not end at an interior point of the circle
jzj = r; we obtain the estimate

jw0j �
Z
f()

jdwj =
Z


jf 0(z)jjdzj

�
Z


jdzj
U0(jzj)2

�
Z r

0

dx

U0(x)2
=

U1(r)

U0(r)
:
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Letting r tend to 1; we obtain the covering theorem. The lower estimate jf(z)j �
U1(jzj)=U0(jzj) also follows from this observation when f is univalent in jzj < r: The
sharpness assertion is obvious.

We need also a variant of comparison theorem in the following specialized form to prove
our second main lemma.

Lemma 2.3 (cf. [13, p. 96]). Let A be a non-negative continuous function on J = [0; 1)
and set Pw = w0 � A=2 � w2: If absolutely continuous real-valued functions u; v on J
satisfy the inequalities

(a) Pu � Pv a.e. in J and

(b) u(0) � v(0);

then u � v holds in J:

Before stating the lemma, we draw the reader's attention to the following fact. Let V
be a solution to the di�erential equation 2V 00 = �AV: If we assume that V > 0 on the
interval (0; a); then V 0(x) is decreasing in 0 < x < a because V 00 = �AV < 0 there. In
particular, if V 0(0) � 0; then V 0 < V 0(0) � 0 on (0; a): We are now in a position to state
our second main lemma.

Lemma 2.4. Under the same hypothesis as in Lemma 2.1, suppose that the function

V2 = V0 � kV1 is positive on (0; 1) for a non-negative constant k: For a complex number

c with jcj � k; set y2 = y0 � cy1: Then the inequality����y02(z)y2(z)

���� � �V2
0(jzj)

V2(jzj)
holds for every z 2 D :

Proof. For a �xed � 2 @D ; we set w(t) = y02(t�)=y2(t�) and v(t) = �V 0

2(t)=V2(t): Then,
the function w satis�es the Riccati equation

w0 = �'

2
� w2:

Hence, the function u(t) = jw(t)j satis�es the di�erential inequality

u0 � jw0j � A

2
+ u2:

Similarly, the function v satis�es v0 = A=2+ v2: Note also that u(0) = jcj � k = v(0): We
now apply Lemma 2.3 to deduce the desired inequality u � v on (0; 1):

By the above proof, we also see that v = �V 0

2=V2 is increasing on (0; 1): Integrating the
above inequality, we get the following result as a corollary.

Corollary 2.5. Under the same circumstances as in Lemma 2.4, the inequality j log y2(z)j �
� logV2(jzj) holds in jzj < 1 and, in particular,

V0(jzj)� kV1(jzj) � jy0(z)� cy1(z)j � 1

V0(jzj)� kV1(jzj) ; jzj < 1:
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3. Proof of main theorems

Proof of Theorem 1.1. Let y0 and y1 be the solutions to the di�erential equation
2y00 + Sfy = 0 in D with the initial conditions y0(0) = 1; y00(0) = 0; y1(0) = 0 and
y01(0) = 1: We now set y2 = y0 � cy1 and U2 = U0 + kU1 for the given numbers c and k
with jcj � k: Then, by (1.2), the identity y2y

0

1 � y02y1 = 1 holds. Therefore f 2 M(c) can
be written in the form y1=y2; where y2 = y0 � cy1: Also, the quantity p(z) = zf 0(z)=f(z)
satis�es the relation

1

p(z)
=

y1(z)y2(z)

z

=

Z 1

0

�
y1y2

�
0

(tz)dt

= 1 + 2

Z 1

0

y1(tz)y
0

2(tz)dt:

We now use Lemma 2.1 to get the estimate���� 1

p(z)
� 1

���� � 2

Z 1

0

U1(tjzj)U2
0(tjzj)dt

� 2

Z 1

0

U1(t)U2
0(t)dt

= 2

Z 1

0

U1(t)U0
0(t)dt + kU1(1)

2:

By (1.5), we conclude that j1=p(z) � 1j < 1; which is equivalent to Re p(z) > 1=2: We
have shown that f is starlike of order 1=2:
We next show the sharpness. Assume that equality holds in (1.5) and that A can be

extended to an analytic function in the unit disk D so that jA(z)j � A(jzj) in jzj < 1:
For a given number " > 0; consider the fundamental solutions y0 and y1 to the equation
2y00 + (1 + ")Ay = 0 in D : Then the function f = y1=(y0 + ky1) 2 M(�k) satis�es
jSf(z)j = (1 + ")jA(z)j � (1 + ")A(jzj) in jzj < 1: On the other hand, by Lemma 2.1,
Uj(t) < yj(t) holds for each j = 1; 2 and 0 < t < 1: Therefore, by the above computation,
we see that the function p(z) = zf 0(z)=f(z) satis�es

lim
x!1�

1

p(x)
� 1 = 2

Z 1

0

y1(t)(y
0

0(t) + ky01(t))dt > 2

Z 1

0

U1(t)(U
0

0(t) + kU 0

1(t))dt = 1:

Therefore, the function f is not starlike of order 1=2: Thus the proof is now complete.

Proof of Theorem 1.3. We use the same notation as in the proof of Theorem 1.1. Further
we set V2 = V0 � kV1: Then, since f

0 = y�22 ; we have the expression

1 +
zf 00(z)

f 0(z)
= 1� 2z

y02(z)

y2(z)
:
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By Lemma 2.4, we estimate����2z y02(z)y2(z)

���� � �2jzj V2
0(jzj)

V2(jzj) < �2 V2
0(1)

V2(1)

The last term is certainly not greater than 1 by (1.6). Therefore, we obtain the inequality
Re (1 + zf 00(z)=f 0(z)) > 0: The sharpness assertion can be obtained in the same way as
in the proof of Theorem 1.1.

4. Examples and concluding remarks

For a given weight function A(x); it is generally diÆcult to give explicit expressions to
the functions Uj(x; tA) and Vj(x; tA) for each constant t > 0:
The simplest case is when A is a positive constant. If we write A = 2�2; where �

is a positive number, then U0(x) = cosh(�x); U1(x) = sinh(�x)=�; V0(x) = cos(�x) and
V1(x) = sin(�x)=�: By using this knowledge, we can deduce Corollary 1.2 from Theorem
1.1.
On the other hand, the most important case is when A(x) = C(1 � x2)�2; where the

constant C is allowed to be negative for convenience. If we write C = 2(4�2 � 1) =
�2(4�2 + 1); then it is classically known (cf. [9, 2�369]) that the functions U0 and U1 are
given in terms of � by

U0(x) =

p
1� x2

2

(�
1 + x

1� x

��

+

�
1 + x

1� x

�
��
)
=
p
1� x2 cosh

�
� log

�
1 + x

1� x

��
;

U1(x) =

p
1� x2

4�

(�
1 + x

1� x

��

�
�
1 + x

1� x

�
��
)
=

p
1� x2

2�
sinh

�
� log

�
1 + x

1� x

��
and in terms of � by

U0(x) =
p
1� x2 cos

�
� log

�
1 + x

1� x

��
;

U1(x) =

p
1� x2

2�
sin

�
� log

�
1 + x

1� x

��
:

In the above, when C = 2; the function U1(x) should take the form

U1(x) =

p
1� x2

2
log

�
1 + x

1� x

�
:

This can be seen by taking limit when � ! 0: Note also that the function Vj can be
understood by Vj(x;A) = Uj(x;�A): There is, however, no hope that the inequality (1.5)
in Theorem 1.1 would hold for A(x) = C(1� x2)�2; C > 0; even in the case when c = 0:
This can be seen by considering the example f(z) = (1=2�) tanh(� log(1 + z)=(1 � z));
where � = "+ 1=2 and " is a complex number with small modulus. Then

zf 0(z)

f(z)
=

�z

(1� z2) sinh[(1 + 2") log(1 + z)=(1� z)]
:

Noting that tan[arg(sinh(a + ib))] = tan b= tanh a for real numbers a and b; we observe
that the argument of xf 0(x)=f(x) can assume any given number when x! 1� and thus
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f is not starlike as long as Im " 6= 0: On the other hand, Sf (z) = 2(4�2 � 1)=(1� z2)2 =
8(1 + ")"=(1� z2)2; and therefore, supz2D (1� jzj2)2jSf(z)j � 8(1 + j"j)j"j can be small as
much as we wish.
Finally, we consider the case A(x) = C(1 � x2)�1 with positive constant C: It seems

that explicit forms of Vj and Uj for A are less known except for the elementary case when
C = 4 (see Section 1). We, however, can still give some expressions for the general case.
Indeed, letting � =

p
1� 2C for a given C 2 R; we obtain the representations

U0(x) = F (�1+�
4
;�1��

4
; 1
2
; x2)

U1(x) = xF (1+�
4
; 1��

4
; 3
2
; x2);

where F (a; b; c; x) stands for the hypergeometric function. (When C < 0; we interpret as
Uj(z;�A) = Vj(z; A):) The above formulae are con�rmed by the fact that the function
y = F (a; b; c; x) satis�es the hypergeometric equation

x(1� x)y00 +
�
c� (a+ b + 1)x

�
y0 � aby = 0:

Note that the above representations are still valid when C > 1=2 and thus when � is pure
imaginary.
As a corollary of Theorem 1.1, we obtain the following result.

Theorem 4.1. Let A(x) = C=(1 � x2) for a positive constant C and let c be a complex

number. Suppose that the inequality

C

Z 1

0

x2F (3+�
4
; 3��

4
; 3
2
; x2)F (1+�

4
; 1��

4
; 3
2
; x2)dx+

16�jcj
C2 �(1+�

4
)2�(1��

4
)2
� 1

holds, where � =
p
1� 2C: If a function f 2 M(c) satis�es jSf(z)j � A(jzj) in jzj < 1;

then f is starlike of order 1=2:

Proof. Noting the relations

U0
0(x) = (C=2)xF (3+�

4
; 3��

4
; 3
2
; x2)

and

U1(1) = F (1+�
4
; 1��

4
; 3
2
; 1) =

�(3
2
)

�(5+�
4
)�(5��

4
)
=

4
p
�

C �(1+�
4
)�(1��

4
)

(see, for example, [1, 15.1.20]), the assertion follows from Theorem 1.1.

Corollary 4.2. Let C2 = (1 + �2
2)=2 � 1:52444; where �2 is the unique positive root of

the equation

1 + �2

2

Z 1

0

x2F (3+i�

4
; 3�i�

4
; 3
2
; x2)F (1+i�

4
; 1�i�

4
; 3
2
; x2)dx = 1:

If a function f 2 M(0) satis�es the inequality jSf(z)j � C2=(1� jzj2) in jzj < 1; then f
is a starlike function of order 1=2: The constant C2 is sharp.
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On the other hand, Theorem 1.3 does not yield any meaningful result in the case when
A(x) = C(1� x2)�1: Indeed, by the asymptotic behavior of the hypergeometric functions
(cf. [1, 15.3.10]), we obtain

V0
0(x)� kV1

0(x) =

� p
�C

3�(3+�
4
)�(3��

4
)
+ k

4
p
�

�(1+�
4
)�(1��

4
)

�
log

1

1� x
+O(1)

as x ! 1�; where � =
p
1 + 2C: In particular, the left-hand side in (1.6) is +1 unless

C = 0: This is, however, a critical case as we see below.

Proposition 4.3. Let A(x) be a weight function. Suppose that the functions V0 and V1
given by (1.4) satisfy the inequality V0(x)� kV1(x) > 0; 0 � x < 1: Then

� lim
x!1�

(V0
0(x)� kV1

0(x)) � 1

2

Z 1

0

A(x)dx + k:(4.1)

Proof. Set V2 = V0 � kV1 as before. By assumption V2 > 0 in the interval J = [0; 1):
Therefore, V2

00 = �AV2=2 < 0 and thus V2
0 is decreasing in J: In particular, V2

0 � V2
0(0) =

�k � 0; and hence, V2 is decreasing in J: In particular, 0 < V2 � V2(0) = 1: We now
obtain

�V20(x0)� k = �
Z x0

0

V2
00(x)dx =

1

2

Z x0

0

A(x)V2(x)dx � 1

2

Z x0

0

A(x)dx;

which implies the required inequality.

As an immediate consequence, we have the estimate for the left-hand side in (1.6):

� lim
x!1�

V0
0(x)� kV1

0(x)

V0(x)� kV1(x)
� (1=2)

R 1

0
A(x)dx + k

V0(1)� kV1(1)
:

Note also that, for A(x) = C(1� x2)��; the integral in (4.1) is convergent if and only if
� < 1:
We end this article with the remark that the Schwarzian radius of convexity (cf. [3])

must be zero unless we impose some restriction on the second coeÆcient a2 = f 00(0)=2:
More strongly, we can show the following.

Proposition 4.4. Let ' be analytic in the unit disk. Suppose that f';0 is univalent and

that f';c is convex for every c 2 K('): Then, ' = 0:

As we shall see soon, this follows from the next more geometric assertion, which gives
a new characterization of a (round) disk in the complex plane. A nice survey on charac-
terizations of a disk was given by K. Hag [8].

Proposition 4.5. Let D be a proper subdomain of the complex plane C : Suppose that

L(D) is convex for each M�obius transformation L such that L�1(1) =2 D: Then D is a

disk or a half-plane.

Proof. First we observe that the set C \D is connected for every line or circle C in bC :
Indeed, otherwise, there are at least two connected components I1 and I2 of C \D: Let
a and b be the end points of the interval I1 and choose z1 2 I1 and z2 2 I2: Then the
M�obius transformation L(z) = (z � a)=(z � b) satis�es b = L�1(1) =2 D; and thus, L(D)
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is convex by assumption. In particular, the segment [L(z1); L(z2)] must be contained in
L(D) entirely. This is, however, impossible because the boundary point L(a) of L(D) lies
in the segment. The �rst claim has now been shown.
Next, by assumption, the domain D is M�obius equivalent to a bounded convex domain.

In particular, D is a Jordan domain. We may assume that 1 2 @D: Let a and b be
distinct two points in � = @D n f1g: Suppose now that D is not a half-plane. Then,
there exists a point c in � which does not lie on the line passing through the points a and
b: In other words, the three points a; b; c form a non-degenerate triangle. We relabel these
points, if necessary, so that b separates a from c in �: We can now choose a circle C which
separates a and c from b and 1: By the �rst claim, I = C \ D must be connected. In
particular, the relative boundary @I of I in C consists of at most two points. On the other
hand, the set �nfa; b; cg is divided into four connected components, say, �j; j = 1; 2; 3; 4:
Since the two end points of each �j are separated by the circle C; any neighbourhood of
�j intersects C \ D: Therefore, �j \ @I 6= 0 for j = 1; 2; 3; 4: This contradicts the fact
#@I � 2: Therefore, D must be a half-plane under the assumption 1 2 @D:

Proof of Proposition 4.4. Set D = f';0(D ): By assumption, Lc(D) is convex for each
c 2 K(') = fc 2 C : 1=c =2 Dg; where Lc(w) = w=(1� cw): Let L(w) = (pw + q)=(rw +
s); ps � qr = 1; be an arbitrary M�obius transformation with L�1(1) =2 D: Note that
s 6= 0 since L(0) 2 L(D) � C : If we put c = �r=s; the M�obius transformation L can be
written in the form

L(w) =
q

s
+

w

s(rw + s)
= s�2Lc(w) +

q

s
:

Since c = 1=L�1(1) 2 K('); the set L(D) is the image of a convex domain under a
complex AÆne map, and thus, L(D) itself is convex. Proposition 4.5 now guarantees
that D is a disk or a half-plane. Therefore, f';0 must be a M�obius transformation and, in
particular, ' = Sf';0 = 0:

Remark. N�akki and V�ais�al�a [11] have given the theorem similar in nature to Proposition
4.5: A simply connected proper subdomain D of C is a quasidisk if and only if L(D) is a

John disk for every M�obius transformation L with L�1(1) =2 D:
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