
A GENERAL APPROACH TO THE FEKETE-SZEGÖ PROBLEM
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Abstract. In this article, we provide a new method solving the Fekete-Szegö problem
for classes of close-to-convex functions defined in terms of subordination. As an example,
we apply it to the class of strongly close-to-convex functions.

1. Introduction

Fekete and Szegö [5] proved the striking result that the inequality

|a3 − µa2
2| ≤ 1 + 2 exp

(
−2µ

1− µ

)
holds for any normalized univalent function f(z) = z + a2z

2 + a3z
3 + · · · in the unit disk

D = {z ∈ C : |z| < 1} and for 0 ≤ µ ≤ 1 and that this inequality is sharp for each µ (see
also [3]). The coefficient functional

(1.1) Λµ(f) = a3 − µa2
2 =

1

6

(
f ′′′(0)− 3µ

2
{f ′′(0)}2

)
on normalized analytic functions f(z) = z+a2z

2 +a3z
3 + · · · in the unit disk is important

in the sense that this can represent various geometric quantities as well as in the sense that
this behaves well with respect to the rotation, namely, Λµ(Rθf) = e2iθΛµ(f) for θ ∈ R.
Here Rθf denotes the rotation of f by angle θ, more precisely, Rθf(z) = e−iθf(eiθz).

In fact, other than the simplest case when Λ0(f) = a3, we have several important
ones. For example, Λ1(f) = a3− a2

2 represents Sf (0)/6, where Sf denotes the Schwarzian
derivative (f ′′/f ′)′− (f ′′/f ′)2/2 of f. Moreover, the first two non-trivial coefficients of the
n-th root transform {f(zn)}1/n = z+ cn+1z

n+1 + c2n+1z
2n+1 + · · · of f(z) = z+ a2z

2 + · · ·
are written by cn+1 = a2/n and c2n+1 = (Λ(n−1)/2nf)/n = a3/n− (n− 1)a2

2/2n
2.

Thus it is quite natural to ask about inequalities for Λµ corresponding to subclasses
of normalized univalent functions in the unit disk. This is sometimes called the Fekete-
Szegö problem. Actually, many authors have considered this problem for typical classes
of univalent functions (see, for instance, [1], [2], [7], [9], [10], [11], [12], [13]).

We denote by A the set of all normalized analytic functions on the unit disk D and
denote by S the subclass of A consisting of all univalent functions as usual. Let M be
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the class of analytic functions ϕ on the unit disk with ϕ(0) = 1 and let N be the subclass
of M consisting of functions with positive real part. For ϕ ∈M, we will denote by M(ϕ)
the subset defined by {h ∈ M : h ≺ ϕ}. Here and hereafter, we use the notation f ≺ g,
or, f(z) ≺ g(z) in D for analytic functions f and g on D to mean the subordination,
namely, that there exists a holomorphic map ω of the unit disk D into itself with ω(0) = 0
such that f = g ◦ ω. Note that if g is univalent, f ≺ g is equivalent to the condition that
f(0) = g(0) and f(D) ⊂ g(D).

Ma and Minda [12] gave a complete answer to the Fekete-Szegö problem for the classes
S∗(ϕ) and K(ϕ) for ϕ ∈M with some mild conditions. (Actually, it is enough to assume

that ϕ is univalent and satisfies ϕ(z̄) = ϕ(z) on D and ϕ′(0) > 0.) These classes are
defined for ϕ ∈M by

S∗(ϕ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z) in D

}
, and

K(ϕ) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z) in D

}
.

Note that, with the special choice of ϕ(z) = (1 + z)/(1 − z) the above classes consist of
starlike and convex functions in the standard sense.

In our previous paper [8], we gave a partial answer to the problem for the classes

C(ϕ, ψ) =

{
f ∈ A : there exists a g ∈ K(ϕ) such that

f ′

g′
≺ ψ in D

}
.

These classes cover close-to-convex functions in some sense as we shall see later. The
authors would like to take this opportunity to note that in Lemma 2.2 and in Theorem
3.1 of [8] some conditions for ϕ such as above was dropped, for instance, the conditions

that ϕ is univalent and satisfies ϕ(z̄) = ϕ(z) on D and ϕ′(0) > 0 should be assumed.
It is worth noting that Rθf ∈ S∗(ϕ) if and only if f ∈ S∗(ϕ) for a fixed real number θ.

The same thing can be said for K(ϕ) and for C(ϕ, ψ) as well. In particular, these classes
are rotation invariant.

The main aim of this paper is to provide a general method to compute the quantity
sup {|Λµ(f)| : f ∈ C(ϕ, ψ)} in terms of ϕ, ψ and µ. Actually, we will see that this quantity
is determined only by the first two non-trivial coefficients of ϕ and ψ and the parameter
µ provided that ϕ′(0) 6= 0 and ψ′(0) 6= 0. Our method also enables us to find all the
extremal functions for the functional |Λµ|.

Our method developed below can easily be modified to apply to the classes S∗(ϕ) and
K(ϕ) as well. We, however, will not state it separately because we have satisfactory results
due to Ma and Minda [12] already.

As a typical example, we treat the class

SCC(α, β) =
⋃

−πα/2<γ<πα/2

SCCγ(α, β)

of strongly close-to-convex functions of order (α, β) for 0 < α ≤ 1 and 0 < β ≤ 1. Here,
f ∈ SCCγ(α, β) if and only if f belongs to A and there exists a function g ∈ A with
| arg(1+ zg′′(z)/g′(z))| < πβ/2 such that | arg(f ′(z)/g′(z))−γ| < πα/2. Though the class
SCC(α, β) seems not to be written in the form C(ϕ, ψ), each SCCγ(α, β) can be described
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in such a form, see Section 4. Note that SCC(α, 1) is the class of strongly close-to-convex
functions of order α (see [6, II, Definition 11.4]), and that SCC(1, 1) is the class of close-
to-convex functions in the standard sense. Note also that SCC0(α, α) contains the class
of strongly starlike functions of order α.

These classes have been considered by many authors, however, no complete answer to
the Fekete-Szegö problem has been given in the literature so far. Actually, many authors
treated only “normalized” classes contained in SCC0(α, β) for some α, β. Only the case
when α = β = 1 was completely settled by Eenigenburg and Silvia [4] (see also [9]). For
other cases, only partial results are known beyond the normalized classes ([10], [1]).

In order to exhibit effectiveness of our method, we will give another proof for a recent
result of Darus and Thomas [2] on Fekete-Szegö inequalities for the class SCC0(α, β) for
all 0 < α, β ≤ 1 and, moreover, we will prove that those inequalities hold still true for the
class SCC(α, β) when 2/3 ≤ µ ≤ 1.

2. General approach to the Fekete-Szegö problem

Let ϕ(z) = 1 + A1z + A2z
2 + · · · , ψ(z) = 1 + B1z + B2z

2 + · · · be analytic in the
unit disk with A1B1 6= 0. For an arbitrary complex number µ, consider the functional
Λµ on A given by (1.1). Since the class C(ϕ, ψ) is rotation invariant, the range set
∆(ϕ, ψ, µ) = {Λµ(f) : f ∈ C(ϕ, ψ)} of Λµ is rotation invariant, too. Therefore, the outer
boundary of the set is a circle centered at the origin. (We will describe this set in a
detailed way in Proposition 2.5 below.) Then the radius, denoted by ρ(ϕ, ψ, µ), of the
circle is nothing but the quantity which we want to compute. Namely,

ρ(ϕ, ψ, µ) = sup {|Λµ(f)| : f ∈ C(ϕ, ψ)}(2.1)

= sup {Re Λµ(f) : f ∈ C(ϕ, ψ)} .(2.2)

First of all, we remark that the quantity ρ(ϕ, ψ, µ) has an obvious convexity property
in µ.

Lemma 2.1. Let s and t be non-negative numbers with s+ t = 1. Then, the inequality

ρ(ϕ, ψ, sµ0 + tµ1) ≤ sρ(ϕ, ψ, µ0) + tρ(ϕ, ψ, µ1)

holds for µ0, µ1 ∈ C.

Proof. By definition,

Λsµ0+tµ1(f) = sΛµ0(f) + tΛµ1(f)

holds for each f ∈ C(ϕ, ψ). Therefore, the triangle inequality

|Λsµ0+tµ1(f)| ≤ s|Λµ0(f)|+ t|Λµ1(f)|

yields the required inequality. �

For each function f(z) = z + a2z
2 + a3z

3 + · · · in C(ϕ, ψ), by definition, we can take
a function g(z) = z + b2z

2 + b3z
3 + · · · from K(ϕ) such that h := f ′/g′ ≺ ψ. If we write
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h(z) = 1 + c1z + c2z
2 + · · · , by a simple calculation, we have the relation

Λµ(f) = a3 − µa2
2 = (b3 − µb22) +

1

3

(
c2 −

3µ

4
c21

)
+

(
2

3
− µ

)
b2c1

= Πµ(b2, b3, c1, c2),

where Πµ is a polynomial given by the above formula. Note also that this quantity can
be written in the form Λµ(g) + 1

3
Λ3µ/4(zh) +

(
2
3
− µ

)
b2c1. By the triangle inequality,

we could get an estimate for |Λµ(f)| by using the knowledge of |Λµ| for K(ϕ), |Λ3µ/4|
for zh(z) where h ∈ M(ψ) and |b2c1|. This was the basic idea in our previous paper [8].
Unfortunately, this estimate is not always sharp. Therefore, in order to get a sharp result,
we may not divide the terms in this way generally.

To obtain information about ρ(ϕ, ψ, µ), we now consider the coefficient regions

Uϕ = {(u2, u3) ∈ C2 : ∃g ∈ K(ϕ) s.t. g(z) = z + u2z
2 + u3z

3 +O(z4)}, and

Wψ = {(w1, w2) ∈ C2 : ∃h ∈M(ψ) s.t. h(z) = 1 + w1z + w2z
2 +O(z3)}.

Then, by definition, a ∈ ∆(ϕ, ψ, µ) if and only if a = Πµ(u2, u3, w1, w2) for some (u2, u3) ∈
Uϕ and (w1, w2) ∈ Wψ. In other words,

∆(ϕ, ψ, µ) = Πµ(Uϕ ×Wψ).

To describe these sets, we introduce the universal set V defined by

V = {(v1, v2) ∈ C2 : ∃ω : D → D holomorphic and satisfying ω(z) = v1z + v2z
2 +O(z3)}.

Then the following result can immediately be obtained by applying the Schwarz-Pick
lemma to the function ω(z)/z (see, for instance, [14, p. 108]).

Lemma 2.2.
V = {(v1, v2) ∈ C2 : |v1|2 + |v2| ≤ 1}.

Furthermore, (v1, v2) ∈ ∂V = {|v1|2 + |v2| = 1} for an analytic function ω(z) = v1z +
v2z

2+· · · on the unit disk with |ω| < 1 if and only if either ω(z) = v1z (in case of |v1| = 1)
or ω(z) = az(z + āv1)/(1 + av1z) (in case of |v1| < 1), where a = v2/(1− |v1|2) ∈ ∂D.

In particular, V is a compact connected set and its interior is a Reinhardt domain in
C2.

Let g ∈ K(ϕ). We now take a holomorphich map ω : D → D with ω(0) = 0 so that
1 + zg′′/g′ = ϕ ◦ ω. Writing ω(z) = v1z + v2z

2 + · · · , we have the relation (u2, u3) =
Fϕ(v1, v2), where Fϕ : C2 → C2 is the map determined by

Fϕ(v1, v2) =
(
A1v1/2, (A1v2 + (A2 + A2

1)v
2
1)/6

)
.

Since Fϕ is an analytic automorphism, namely, a biholomorphic map of C2, we have the
following.

Lemma 2.3. Uϕ = Fϕ(V ). In particular, Uϕ is a compact connected set and ∂Uϕ =
Fϕ(∂V ).

Next, suppose that h(z) = 1 + w1z + w2z
2 + · · · = ψ(ω(z)) for some analytic function

ω(z) = v1z+v2z
2+· · · on D with |ω| < 1. Then, we have the relation (w1, w2) = Gψ(v1, v2),

where
Gψ(v1, v2) = (B1v1, B2v

2
1 +B1v2).
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Since Gψ : C2 → C2 is also biholomorphic, we have

Lemma 2.4. Wψ = Gψ(V ). In particular, Wψ is a compact connected set and ∂Wψ =
Gψ(∂V ).

Let (u1, u2) and (v1, v2) be points in ∂V. Then, by Lemma 2.2, functions ω1, ω2 are
uniquely determined by the conditions |ωj| < 1, ω1(z) = u1z + u2z

2 + . . . and ω2(z) =
v1z+ v2z

2 + . . . . Therefore, a function f ∈ C(ϕ, ψ) is determined by f ′/g′ = ψ ◦ω2, where
1+zg′′/g′ = ϕ◦ω1.We denote by E[u1, u2, v1, v2] or, more specifically, by Eϕ,ψ[u1, u2, v1, v2]
the function f determined above.

By Lemmas 2.3 and 2.4, we have ∆(ϕ, ψ, µ) = Πµ◦(Fϕ×Gψ)(V ×V ). In particular, the
quantity ρ = ρ(ϕ, ψ, µ) depends only on A1, A2, B1, B2 and µ. Therefore, we can express
ρ also as a function H in these variables, namely, we can write

(2.3) ρ(ϕ, ψ, µ) = H(A1, A2, B1, B2, µ),

where ϕ(z) = 1 + A1z + A2z
2 + · · · and ψ(z) = 1 +B1z +B2z

2 + · · · . Also, we can now
show the following.

Proposition 2.5. Let ϕ, ψ ∈ M and suppose that ϕ′(0) 6= 0 and ψ′(0) 6= 0. Then the
range set ∆(ϕ, ψ, µ) of the functional Λµ on C(ϕ, ψ) is a closed disk centered at the origin.

Proof. The relation Πµ(0, 0, 0, 0) = 0 implies that 0 ∈ ∆ = ∆(ϕ, ψ, µ). Since ∆ =
Πµ(Uϕ, Vψ) is closed and connected, there is a point z ∈ ∆ with |z| = r for each r ∈
[0, ρ(ϕ, ψ, µ)]. As we have seen, the set ∆ is rotation invariant, and therefore, ∆ must be
a closed disk {|z| ≤ ρ(ϕ, ψ, µ)}. �

A direct calculation shows

Πµ(Fϕ(u1, u2), Gψ(v1, v2)) =

((
1

6
− µ

4

)
A2

1 +
A2

6

)
u2

1 +
A1

6
u2

+

(
B2

3
− B2

1µ

4

)
v2

1 +
B1

3
v2 +

(
1

3
− µ

2

)
A1B1u1v1

=Au2 +Bv2 +Ku2
1 + 2Mu1v1 + Lv2

1.

Here, for later convenience as well, we have set

A =
A1

6
,

B =
B1

3
,

K =
A2

6
+

1

4

(
2

3
− µ

)
A2

1,(2.4)

L =
B2

3
− µ

4
B2

1 ,

M =
1

4

(
2

3
− µ

)
A1B1.

Based on the above facts, we can reduce our problem to an algebraic one.
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Lemma 2.6. The quantity ρ(ϕ, ψ, µ) is given by the function Ω defined by

Ω(A,B,K,L,M) = max
|u1|2+|u2|≤1
|v1|2+|v2|≤1

∣∣Au2 +Bv2 +Ku2
1 + Lv2

1 + 2Mu1v1

∣∣(2.5)

= max
|u1|2+|u2|≤1
|v1|2+|v2|≤1

Re
[
Au2 +Bv2 +Ku2

1 + Lv2
1 + 2Mu1v1

]
,(2.6)

where A,B,K,L,M are related to ϕ and ψ by (2.4). Furthermore, one can replace the
range in the above maxima by |u1|2 + |u2| = 1 and |v1|2 + |v2| = 1.

Actually, expressions (2.5) and (2.6) follows from (2.1) and (2.2), respectively, together
with the above lemmas. The last assertion is an immediate consequence of the maximum
principle. (This also follows from the fact that ∂V × ∂V is the Sirov boundary of the
domain IntV × IntV.)

The function H given by (2.3) is now described by the relation

H(A1, A2, B1, B2, µ) = Ω

[
A1

6
,
B1

3
,
A2

6
+

1

4

(
2

3
− µ

)
A2

1,
B2

3
− µ

4
B2

1 ,
1

4

(
2

3
− µ

)
A1B1

]
.

In the rest of the section, we give several simplifications of the expression of Ω and,
equivalently, of H. The expressions (2.5) and (2.6) have their own advantage. We begin
with examination of the first expression. Note that each variable of (v1, v2) ∈ V can have
arbitrary argument independently in view of the shape of V (Lemma 2.2). This means
that, for (u1, u2), (v1, v2) ∈ V, in the chain of trivial inequalities

|Au2 +Bv2 +Ku2
1 + 2Mu1v1 + Lv2

1|
≤|A||u2|+ |B||v2|+ |Ku2

1 + 2Mu1v1 + Lv2
1|(2.7)

≤|A|(1− |u1|2) + |B|(1− |v1|2) + |Ku2
1 + 2Mu1v1 + Lv2

1|(2.8)

all equalities can hold at once. Therefore, we can deduce the following expression of Ω
from (2.5):

Ω(A,B,K,L,M) = max
|u|≤1,|v|≤1

[
|A|(1− |u|2) + |B|(1− |v|2) + |Ku2 + 2Muv + Lv2|

]
.

Now we introduce the auxiliary functions P and Q on [0,+∞)× [0,+∞) defined by

P (s, t) = Q(s, t)− |A|s2 − |B|t2,
Q(s, t) = max

|u|=s,|v|=t

∣∣Ku2 + 2Muv + Lv2
∣∣

= max
θ,τ∈R

∣∣Ks2e2iθ + 2Mstei(θ+τ) + Lt2e2iτ
∣∣

= max
θ∈R

∣∣Ks2 + 2Msteiθ + Lt2e2iθ
∣∣ .

Then, we have the simple-looking expression

(2.9) Ω = |A|+ |B|+ max
0≤s,t≤1

P (s, t).

By definition, these functions are homogeneous of degree 2, precisely, P (rs, rt) = r2P (s, t)
and Q(rs, rt) = r2Q(s, t) hold for each r ≥ 0. Therefore, setting F (r) = P (rs, rt), we
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observe that F (r) is non-decreasing if F (1) ≥ 0 and non-increasing if F (1) ≤ 0. In
particular, we can see the relation

max
0≤s,t≤1

P (s, t) = max{Φ1,Φ2, 0},

where Φ1 and Φ2 are the functions in A,B,K,L,M defined by

(2.10) Φ1 = max
0≤s≤1

P (s, 1) and Φ2 = max
0≤t≤1

P (1, t).

Thus, we have reached the following result.

Theorem 2.7. The quantity Ω = Ω(A,B,K,L,M) can be represented by

Ω = |A|+ |B|+ max{Φ1,Φ2, 0},
where Φj = Φj(A,B,K,L,M) is defined by (2.10) for j = 1, 2.

Unfortunately, it is not always easy to calculate Q(s, t) and thus P (s, t). If K,L and
M are all real, however, we can do that as we shall see in the next section.

Now we make a brief discussion on extremal points. Let f(z) = z+a2z
2 +a3z

3 + · · · be
an extremal function in C(ϕ, ψ) for the functional |Λµ|. Note here that the rotation Rθf
is an extremal one because Λµ(Rθf) = e2iθΛµ(f). Thus, we may regard Rθf, θ ∈ R, as a
trivial one-parameter family of extremal functions.

By definition, there is a function g ∈ K(ϕ) such that f ′/g′ ≺ ψ. We take holomorphic
maps ω1, ω2 : D → D with ω1(0) = ω2(0) = 0 so that 1 + zg′′/g′ = ϕ ◦ ω1 and that
f ′/g′ = ψ ◦ ω2. Let (u1, u2, v1, v2) be a corresponding point in V × V, namely, ω1(z) =
u1z+u2z

2 + . . . and ω2(z) = v1z+ v2z
2 + . . . . For this point, equalities must hold in (2.7)

and (2.8) simultaneously. In particular, (u1, u2, v1, v2) ∈ ∂V ×∂V. Now, by Lemma 2.2, the
forms of ω1, ω2 are exactly determined by u1, u2, v1, v2. In this way, the extremal function
f can be expressed in terms of ϕ, ψ, u1, u2, v1, v2 and will be denoted by Eϕ,ψ[u1, u2, v1, v2].

We further analyze several possible cases and explain how to determine u1, u2, v1, v2.
Recall that we have set s = |u1| and t = |v1|.

Case 1: max{Φ1,Φ2} > 0. Assume, for instance, Φ1 ≥ Φ2. In this case, we have
Ω = |A|+ |B|+ Φ1. Then there exists an s0 ∈ [0, 1] such that Φ1 = P (s0, 1). As we shall
see by example in the next section, such s0 is not unique in general, however, Φ1 > P (s, t)
holds for any 0 ≤ s ≤ 1 and for any 0 ≤ t < 1 by the homogeneity of P. Therefore, in
this case, |v1| = 1 and v2 = 0 hold. Choose u1 and v1 with |u1| = s0, |v1| = 1 so that
Q(s0, 1) = |Ku2

1 + 2Mu1v1 + Lv2
1|. Then choose u2 with |u2| = 1 − s2

0 so that inequality
holds in (2.7), in other words, Au2 and Ku2

1 + 2Mu1v1 + Lv2
1 have the same argument.

The case when Φ2 ≥ Φ1 can be treated smilarly.
Case 2: max{Φ1,Φ2} = 0. This is a degenerate case. Assume, for instance, Φ1 = 0.

Then, there exsits an s0 ∈ [0, 1] such that P (s0, 1) = 0. Let (u1, u2, v1, v2) be the point in
∂V × ∂V determined in the same way as in Case 1.

In the present case, P (s0t, t) = 0 holds for any t ∈ [0, 1] by the homogeneity of P (s, t).
We choose a complex number b with |b| = 1 so that Bb and Ku2

1 +2Mu1v1 +Lv2
1 have the

same argument. For simplicity, we consider only the generic case when s0 < 1. Choose a
non-negative number k = k(t) so that |tu1|2 + |ku2| = 1, namely, k = (1− s2

0t
2)/(1− s2

0).
We then have a non-trivial one-parameter family of extremal functions ft = Eϕ,ψ[tu1, (1−
s2
0t

2)u2/(1− s2
0), tv1, (1− t2)b)] (0 ≤ t ≤ 1).
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Case 3: max{Φ1,Φ2} < 0. This is one of the simplest cases. The maximum in (2.5) is
attained only in the case when u1 = v1 = 0. Therefore, by Lemma 2.2, ω1 and ω2 above
must take the forms ω1(z) = az2 and ω2(z) = bz2, where a and b are unimodular constants
chosen so that Aa and Bb have the same argument.

We end this section with examination of expression (2.6). Actually, in some cases, this
method is more appropriate. As above, we easily have the expression

(2.11) Ω(A,B,K,L,M) = |A|+|B|+ max
|u|≤1,|v|≤1

Re
[
Ku2+2Muv+Lv2−|A||u|2−|B||v|2

]
.

Introducing real coordinates u = x1 + ix2 and v = x3 + ix4, we obtain the expression of
Ω in terms of a real quadratic form in x1, x2, x3, x4.

Theorem 2.8. The quantity Ω can be described in the form

Ω(A,B,K,L,M) = |A|+ |B|+ max
x2
1+x2

2≤1

x2
3+x2

4≤1

4∑
j,k=1

cjkxjxk,

where cjk are the entries of the real symmetric matrix

C =


ReK − |A| −ImK ReM −ImM
−ImK −ReK − |A| ImM −ReM
ReM ImM ReL− |B| −ImL
−ImM −ReM −ImL −ReL− |B|

 .

It seems quite difficult to treat the above matrix, however, when some of entries vanish,
the situation becomes easier to analyze. For example, if the matrix C is non-positive, we
know that Ω = |A|+ |B|. Sometimes it is easier to check this condition than to calculate
Φj directly in the above if truly Ω = |A|+ |B| holds.

3. The case when K,L,M are all real

When K,L and M are all real, we can actually calculate the quantity Ω(A,B,K,L,M).
For convenience, we define Sign[x] for x ∈ R by

Sign[x] =


1 if x > 0

−1 if x < 0

±1 if x = 0.

For example, the assertion K = Sign[x]L means that K = L or K = −L when x = 0. We
are now ready to state our main result in this section.
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Theorem 3.1. Let A,B ∈ C and K,L,M ∈ R. If KL ≥ 0, the quantity Ω(A,B,K,L,M)
in (2.5) is given by

Ω(A,B,K,L,M)

=



|A|+ |B| if |A|+ |B| ≥ |K|+ |L| and D ≥ 0

|A|+ |L| − M2

|K| − |A|
if |A| > |M |+ |K| and D < 0

|B|+ |K| − M2

|L| − |B|
if |B| > |M |+ |L| and D < 0

|K|+ 2|M |+ |L| otherwise,

where D = (|K|− |A|)(|L|− |B|)−M2. If KL < 0, the quantity Ω(A,B,K,L,M) is given
by

Ω(A,B,K,L,M) = |A|+ |B|+ max{0, R},
where R is defined by the table

(a) (b) (c)

(1) 0 0 |L| − |B|+ M2

|A|+ |K|

(2) 0 (no possibility) −|L| − |B|+ M2

|A| − |K|

(3) |K| − |A|+ M2

|B|+ |L|
−|K| − |A|+ M2

|B| − |L|
S − |A| − |B|

according to the combination of the cases

(1) |A| ≥ max
{
|K|

√
1− M2

KL
, |M | − |K|

}
,

(2) |K|+ |M | ≤ |A| < |K|
√

1− M2

KL
,

(3) otherwise,

and the cases

(a) |B| ≥ max
{
|L|

√
1− M2

KL
, |M | − |L|

}
,

(b) |L|+ |M | ≤ |B| < |L|
√

1− M2

KL
,

(c) otherwise.

Here, S is defined by

S =


−|K|+ 2|M |+ |L| if |MK| − |ML| ≤ −2|KL|

|K − L|
√

1− M2

KL
if − 2|KL| ≤ |MK| − |ML| ≤ 2|KL|

|K|+ 2|M | − |L| if 2|KL| ≤ |MK| − |ML|.

In the rest of the section, we prove the above theorem. The information on extremal
functions can be obtained from Proposition 3.4 when KL ≥ 0 and Proposition 3.7 when
KL < 0. We start with the investigation of the preparatory quantity

q(a, b, c, θ) =
∣∣a+ 2beiθ + ce2iθ

∣∣
for a, b, c, θ ∈ R. First we need the following lemma.
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Lemma 3.2. When ac ≥ 0, one has

q(a, b, c, θ) ≤ |a|+ 2|b|+ |c|,

where equality holds when eiθ = Sign(b(a+ c)).

Note that a and c have the same signature if ac ≥ 0. In the case when ac < 0 the
situation becomes a bit complicated.

Lemma 3.3. When ac < 0, letting ξ = −b(a+ c)/2ac, one has

q(a, b, c, θ) ≤


| − a+ 2b− c| = Sign[b](−a+ 2b− c) if ξ ≤ −1√

1− b2

ac
|a− c| if − 1 ≤ ξ ≤ 1

|a+ 2b+ c| = Sign[b](a+ 2b+ c) if 1 ≤ ξ,

where equality holds when cos θ = −1, cos θ = ξ and cos θ = 1, respectively.

Proof. We set x = cos θ. Then

q(a, b, c, θ)2 = 4acx2 + 4b(a+ c)x+ a2 + 4b2 + c2 − 2ac

= 4ac(x− ξ)2 + (1− b2/ac)(a− c)2.

By analyzing the behaviour of this quadratic polynomial in x, we obtain the desired
result. �

We now return to our problem. Noting the relationQ(s, t) = maxθ∈R q(Ks
2,Mst, Lt2, θ),

we can explicitly calculate Q(s, t) by Lemmas 3.2 and 3.3.
First, we treat the easier case when KL ≥ 0. In this case, P (s, t) = (|K| − |A|)s2 +

2|M |st+(|L|− |B|)t2. We denote by D the descriminant of this quadratic form, precisely,
D = (|K| − |A|)(|L| − |B|)−M2. Then the next statement is easily verified.

Proposition 3.4. Assume that KL ≥ 0. Then

Ω(A,B,K,L,M)− |A| − |B| = max
0≤s,t≤1

P (s, t)

=



P (0, 0) = 0 if |K|+ |L| ≤ |A|+ |B| and D ≥ 0

P
(

|M |
|A|−|K| , 1

)
= |L| − |B| − M2

|K| − |A|
if |M | < |A| − |K| and D < 0

P
(
1, |M |

|B|−|L|

)
= |K| − |A| − M2

|L| − |B|
if |M | < |B| − |L| and D < 0

P (1, 1) = |K|+ 2|M |+ |L| − |A| − |B| otherwise.

In each case, the maximum point of P (s, t) is unique in (s, t) ∈ [0, 1] × [0, 1] except for
the following cases:

(a) When D = 0 and |K| + |L| < |A| + |B|, one has P (s, t) = 0 if and only if
s(|K| − |A|) + t|M | = 0 and s|M |+ t(|L| − |B|) = 0.

(b) When M = 0, |K| = |A| and |L| = |B|, one has P (s, t) = 0 for all s, t.
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Next, we consider the case when KL < 0 and M 6= 0. In what follows, the terms
“increasing” and “decreasing” will be used in the strict sense.

Let r0 and r1 be the positive numbers determined by the relations∣∣∣∣ M

2KL

∣∣∣∣ (
|K|r0 −

|L|
r0

)
= −1 and

∣∣∣∣ M

2KL

∣∣∣∣ (
|K|r1 −

|L|
r1

)
= 1.

Since the function |K|r − |L|/r is increasing in r > 0, the inequality r0 < r1 holds. We
set I1 = [0, r0], I2 = [r0, r1], I3 = [r1,+∞]. Then we can show the following.

Lemma 3.5. Let K,L,M ∈ R with KL < 0 and M 6= 0. Then

Q(s, t) =


−|K|s2 + 2|M |st+ |L|t2 if s/t ∈ I1 = [0, r0]√

1− M2

KL
|Ks2 − Lt2| if s/t ∈ I2 = [r0, r1]

|K|s2 + 2|M |st− |L|t2 if s/t ∈ I3 = [r1,∞].

Proof. Let ε = Sign[KM ]. We now apply Lemma 3.3 to the case when a = Ks2, b =
Mst, c = Lt2. Then we have

ξ =
−b(a+ c)

2ac
= − M

2KL

(
K
s

t
+ L

t

s

)
= ε

∣∣∣∣ M

2KL

∣∣∣∣ (
|K|s

t
− |L| t

s

)
.

When ε = +1, the condition ξ ≤ −1 holds precisely if s/t ≤ r0, i.e., s/t ∈ I1. In this case,
by Lemma 3.3, we have

Q(s, t) = Sign[M ](−Ks2 + 2Mst− Lt2) = −|K|s2 + 2|M |st+ |L|t2.

When ε = −1, the condition ξ ≥ 1 holds precisely if s/t ≤ r0, i.e., s/t ∈ I1. In this case,
again by Lemma 3.3, we have

Q(s, t) = Sign[M ](Ks2 + 2Mst+ Lt2) = −|K|s2 + 2|M |st+ |L|t2.

Therefore, we show the assertion in the case when s/t ∈ I1. The other two cases can be
dealt with similarly. �

We need later the following properties of r0 and r1.

Lemma 3.6. Let K,L,M ∈ R with KL < 0 and M 6= 0 and consider the following
conditions:

(a) r0 ≤ |M |/(|A|+ |K|),
(b) r1 ≤ |M |/(|A| − |K|), and

(c) |A| ≤ |K|
√

1− M2

KL
.

Then (a) and (c) are equivalent. Furthermore, when |A| > |K|, (b) and (c) are equivalent.
Also,

r0 ≤ 1 ⇔ −2|KL| ≤ |MK| − |ML| and r1 ≤ 1 ⇔ 2|KL| ≤ |MK| − |ML|.
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Proof. We observe

r0 ≤
|M |

|A|+ |K|

⇔ − 1 ≤
∣∣∣∣ M

2KL

∣∣∣∣ (
|K| |M |

|A|+ |K|
− |L| |A|+ |K|

|M |

)
⇔ − 2|KL| ≤ |K|M2

|A|+ |K|
− |L|(|A|+ |K|)

⇔ |L|(|A| − |K|) ≤ |K|M2

|A|+ |K|

⇔ A2 −K2 ≤ |K|M2

|L|
= −KM

2

L

⇔ A2 ≤ K2

(
1− M2

KL

)
.

Next, r0 ≤ 1 if and only if −1 ≤
∣∣ M
2KL

∣∣ (|K| − |L|) , which is equivalent to −2|KL| ≤
|MK| − |ML|. The other cases can be treated in the similar way. �

Now we are ready to show the following result.

Proposition 3.7. Let A,B ∈ C and K,L,M ∈ R with AB 6= 0 and KL < 0. Then,

Φ1 =


P

(
|M |

|A|+|K| , 1
)

=
M2

|A|+ |K|
+ |L| − |B| if |A| ≥ max

{
|K|

√
1− M2

KL
, |M | − |K|

}
P

(
|M |

|A|−|K| , 1
)

=
M2

|A| − |K|
− |L| − |B| if |K|+ |M | ≤ |A| < |K|

√
1− M2

KL

P (1, 1) otherwise.

In each case, the maximum point of P (s, 1) is unique in s ∈ [0, 1] except for the following
two cases:

(a) When M = 0 and |A| = |K|, the function P (s, 1) is constant in 0 ≤ s ≤ 1.

(b) When M 6= 0, |A| = |K|
√

1− M2

KL
and −2|KL| < |MK| − |ML|, the maximum

of P (s, 1) in s ∈ [0, 1] is attained at each point in the interval I2 ∩ [0, 1] which has
positive length.

Proof. We first consider the case when KM > 0. When s ∈ I1 ∩ [0, 1], by Lemma 3.5,
we have P (s, 1) = (−|K|s2 + 2|M |s + |L|) − |A|s2 − |B| = −(|A| + |K|)s2 + 2|M |s +
|L| − |B|. The axis of symmetry of the graph of this quadratic polynomial in s is s =
|M |/(|A| + |K|). By Lemma 3.6, we see that |M |/(|A| + |K|) ∈ I1 ∩ [0, 1] if and only if

|A| ≥ max{|K|
√

1− M2

KL
, |M | − |K|}. Hence, we can see the following.

Claim 1.

(1) If |A| ≥ max{|K|
√

1− M2

KL
, |M | − |K|}, then s = M/(|A| + |K|) is the unique

maximum point of P (s, 1) in I1 ∩ [0, 1], thus P (s, 1) ≤ P (M/(|A|+ |K|), 1) there.
(2) Otherwise, P (s, 1) is increasing in I1 ∩ [0, 1].
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When s ∈ I2 ∩ [0, 1], we have P (s, 1) =
√

1− M2

KL
(|K|s2 + |L|)− |A|s2 − |B|. Then it is

easy to see the following

Claim 2.

(1) If |K|
√

1− M2

KL
> |A|, the function P (s, 1) is increasing in I2 ∩ [0, 1].

(2) If |K|
√

1− M2

KL
< |A|, the function P (s, 1) is decreasing in I2 ∩ [0, 1].

(3) If |K|
√

1− M2

KL
= |A|, the function P (s, 1) is constant in I2 ∩ [0, 1].

Here, we note that the interval I2∩[0, 1] has positive length if and only if r0 < 1. In view
of Lemma 3.6, the last condition is equivalent to the inequality −2|KL| < |MK| − |ML|.

When s ∈ I3 ∩ [0, 1], we have P (s, 1) = (|K|s2 + 2|M |s− |L|)− |A|s2 − |B| = −(|A| −
|K|)s2 + 2|M |s− |L| − |B|. If |A| = |K|, then P (s, 1) is increasing in s. We now assume
that |A| 6= |K|. Then the axis of symmetry is s = |M |/(|A| − |K|) and, by Lemma 3.6,
this value is contained in I3 ∩ [0, 1] if and only if |A| − |K| > 0, |M | ≤ |A| − |K| and if

|A| ≥ |K|
√

1− M2

KL
(> |K|). Thus, we obtain

Claim 3.

(1) If |A| ≤ |K|+ |M |, the function P (s, 1) is increasing in I3 ∩ [0, 1].

(2) If |A| ≥ |K|
√

1− M2

KL
, then the function P (s, 1) is decreasing in I3 ∩ [0, 1].

(3) If |K|+|M | < |A| < |K|
√

1− M2

KL
, then s = M/(|A|−|K|) is the unique maximum

point of P (s, 1) in I3 ∩ [0, 1], thus P (s, 1) ≤ P (M/(|A| − |K|), 1) there.

Summarizing the above three claims, we obtain the statement in our proposition in-
cluding the discussion on the uniqueness of maximum points.

When M = 0, we have P (s, 1) = (K − |A|)s2+const., so the desired conclusion can be
directly deduced. �

By interchanging the roles of K,L and A,B, respectively, we can deduce the corre-
sponding result for Φ2 from the above proposition. Concretely, we have

Φ2 =


P

(
1, |M |

|B|+|L|

)
=

M2

|B|+ |L|
+ |K| − |A| if |B| ≥ max

{
|L|

√
1− M2

KL
, |M | − |L|

}
P

(
1, |M |

|B|−|L|

)
=

M2

|B| − |L|
− |K| − |A| if |L|+ |M | ≤ |B| < |L|

√
1− M2

KL

P (1, 1) otherwise.

Proof of Theorem 3.1. The first part is an immediate consequence of Proposition 3.4.
We show now the second part of the theorem. Assume that KL < 0. By Theorem 2.8, we
see that the quantity R̃ = max{Φ1,Φ2} satisfies Ω = |A| + |B| + max{0, R̃}. Therefore,
it is enough to see that max{0, R̃} = max{0, R}, where R is the quantity given in the
theorem. Below, for instance, by case (1a), we mean the case when conditions (1) and (a)
in the theorem both hold.
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Case (1a): We show that R̃ ≤ 0, and hence, max{0, R̃} = max{0, R}. By condition

(a), we have |B| ≥ |L|
√

1−M2/KL. By Proposition 3.7,

Φ1 =
M2

|A|+ |K|
+ |L| − |B|

≤ M2

|A|+ |K|
+ |L| − |L|

√
1− M2

KL

=
M2

|A|+ |K|
− M2

|K|(1 +
√

1−M2/KL)

=
M2(|K|

√
1−M2/KL− |A|)

(|A|+ |K|)|K|(1 +
√

1−M2/KL)
.

Now condition (1) implies the inequality Φ1 ≤ 0. In the same way, one can show that
Φ2 ≤ 0.

Cases (2a) and (1b): First consider case (2a). Note that (|A|− |K|)(|L|+ |B|) ≥M2

holds. Then, by Proposition 3.7, we see that

Φ1 =
M2

|A| − |K|
− |L| − |B| = M2 − (|A| − |K|)(|L|+ |B|)

|A| − |K|
≤ 0

and

Φ2 =
M2

|B|+ |L|
+ |K| − |A| = M2 − (|A| − |K|)(|L|+ |B|)

|B|+ |L|
≤ 0.

Therefore, we conclude that R̃ ≤ 0. Case (1b) can be treated similarly.
Case (2b): This case never occurs. To show this, suppose that conditions (2) and

(b) both hold. Set a = |A|, b = |B|, k = |K|, l = |L| and m = |M |. Then k + m ≤
a < k

√
1 +m2/kl and l + m ≤ b < l

√
1 +m2/kl. In particular, m 6= 0. By squaring

k+m < k
√

1 +m2/kl, we have 2km+m2 < km2/l, which is equivalent to 2kl < (k− l)m.
By using the other inequality, we also have 2kl < (l − k)m. This is a contradiction.

The other cases: By Proposition 3.7, we obtain the required expression for R up to the
relation S = Q(1, 1) in case (3c). WhenM = 0, this relation is verified in a straightforward
way. We now suppose that M 6= 0. In view of Lemma 3.5, the quantity Q(1, 1) can be
computed according to the interval Ij to which 1 belongs. For instance, 1 ∈ I1 = (0, r0]
if and only if 1 ≤ r0, which is equivalent to the condition |MK| − |ML| ≤ −2|KL| by
Lemma 3.6. In this way, the relation S = Q(1, 1) is deduced. �

4. Strongly close-to-convex functions

In Section 1, we introduced the class SCC(α, β) of strongly close-to-convex functions of
order (α, β). This class itself is out of our category of the classes C(ϕ, ψ), however, each
subclass SCCγ(α, β) can be described in this form. Therefore, our method is applicable.
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Indeed, we define the univalent function ϕα,γ on D for 0 < α ≤ 1 and −πα/2 < γ <
πα/2 by

ϕα,γ(z) =

(
1 + eiγ/αz

1− e−iγ/αz

)α

= 1 +
(
2α cos

γ

α

)
z + 2α cos

γ

α

(
α cos

γ

α
− i sin

γ

α

)
z2 + · · ·

and set ϕα = ϕα,0 for simplicity. Then the function ϕα,γ maps the unit disk conformally
onto the sector {z ∈ C∗ : | arg z−γ| < πα/2}. Note also that ϕα,γ(0) = 1 and ϕ′α,γ(0) > 0.
Therefore, by definition, we now see SCCγ(α, β) = C(ϕβ, ϕα,γ).

In the following, we concentrate on the case when ϕ = ϕβ and ψ = ϕα,γ. According to
(2.4), set

A =
β

3

Bγ =
2α

3
cos

γ

α
K = β2(1− µ),(4.1)

Lγ =
2α

3
cos

γ

α

((
1− 3µ

2

)
α cos

γ

α
− i sin

γ

α

)
,

Mγ =

(
2

3
− µ

)
αβ cos

γ

α
.

Especially, if γ = 0, we have

A =
β

3
, B0 =

2α

3
, K = β2(1− µ), L0 = α2

(
2

3
− µ

)
, M0 = αβ

(
2

3
− µ

)
.

Therefore, Theorem 3.1 can be used to deduce the following result due to Darus and
Thomas [2].

Theorem 4.1. Let 0 < α, β ≤ 1 and µ ∈ R. Then, every function f(z) = z + a2z
2 +

a3z
3 + · · · in the class SCC0(α, β) satisfies

|a3 − µa2
2| ≤



(α+ β)2

(
2

3
− µ

)
+
β2

3
if µ ≤ µ1,

1

3α

[
2α2 + αβ2 − 2β2 +

4β2

2− 2α+ 3αµ

]
if µ1 ≤ µ ≤ µ2,

2α+ β

3
if µ2 ≤ µ ≤ µ′2,

1

3α

[
2α2 − αβ2 − 2β2 +

4β2

2 + 2α− 3αµ

]
if µ′2 ≤ µ ≤ µ′1,

(α+ β)2

(
µ− 2

3

)
− β2

3
if µ′1 ≤ µ,
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where µ1 =
2

3

(
1− 1

α+ β

)
, µ2 =

2

3

(
1− 1− β

α+ 2β − αβ

)
, µ′2 =

2

3

(
1 +

1 + β

α+ 2β + αβ

)
,

µ′1 =
2

3

(
1 +

1

α+ β

)
. Furthermore, the above inequality is sharp in the sense that for

each µ there is a function in SCC0(α, β) for which equality holds.

Note that the inequalities µ1 < µ2 ≤ 2
3
< 1 ≤ µ′2 ≤ µ′1 hold always, and that µ2 = 2

3
and µ′2 = µ′1 if β = 1.

Proof. For simplicity, we write B = B0, L = L0 and M = M0 in the proof. Set D =
(|K|−A)(|L|−B)−M2 and set ρ = ρ(ϕβ, ϕα, µ). First noting that KL ≥ 0 if and only if
either µ ≤ 2/3 or µ ≥ 1, we divide the proof into three cases according to the value of µ.

Case 1: µ ≤ 2/3. In this case, K ≥ 0, L ≥ 0 and M ≥ 0. A simple computation
shows that D < 0 if and only if µ < µ2. For a while, we consider this case. Also,
|M | + |K| < |A| is equivalent to the condition µ > ν1 := (2 − (1 − β)/(α + β))/3.
However, since ν1 − µ2 = α(1 − β2)/(α + β)(α + 2β − αβ) ≥ 0, this case never occurs.
On the other hand, |M | + |L| < |B| is equivalent to the condition µ > µ1. In this
case, |M |/(|B| − |L|) = β(2 − 3µ)/(2 − α(2 − 3µ)) ∈ (0, 1), and Theorem 3.1 yields
ρ = K +B −M2/(L−B) = (2α2 + αβ2 − 2β2 + 4β2/(2− α(2− 3µ)))/3α.

The other case, namely, when µ ≤ µ1, by Theorem 3.1, we see that ρ = K + 2M +L =
(α+ β)2(3/2− µ) + β2/3.

Next, we consider the caseD ≥ 0, in other words, µ2 ≤ µ ≤ 2/3. Then, A+B ≥ |K|+|L|
if and only if µ ≥ ν2 := (2− (2α+β(1−β))/(α2 +β2))/3. Since ν2 < µ2 is true, the above
condition holds. Hence, by Theorem 3.1, we obtain ρ = A+B = (2α+ β)/3.

Case 2: µ ≥ 1. Then, K ≤ 0, L ≤ 0 and M ≤ 0. Note first that D < 0 if and only if µ >
µ′2. Then, |M |+|K| < |A| is equivalent to the condition µ < (2+(1+β)/(α+β))/3(< µ′2).
Therefore, this case never happens. On the other hand, |M |+|L| < |B| is equivalent to the
condition µ < µ′1 and in this case −M/(B+L) = β(3µ− 2)/(2−α(3µ− 2)) ∈ (0, 1). Now
Theorem 3.1 implies ρ = B−K+M2/(B+L) = (2α−αβ2−2β2+4β2/(2−α(3µ−2)))/3α
when µ′2 < µ < µ′1. When µ ≥ µ′1, we have ρ = −K−2M −L = (α+β)2(µ−3/2)−β2/3.

Next, consider the case when 1 ≤ µ ≤ µ′2. Then, |K| + |L| ≤ |A| + |B| if and only
if µ ≤ (2 + (2α + β + β2)/(α2 + β2))/3(> µ′2). Therefore, by Theorem 3.1, we have
ρ = A+B = (2α+ β)/3.

Case 3: 2/3 < µ < 1. Though the present case will be covered by Theorem 4.2, we give
a proof as an application of Theorem 3.1. In this case, K > 0, L < 0 and M < 0. Since
|K|

√
1−M2/KL = β2

√
(1− µ)/3 ≤ β2/3 ≤ A and |M |−|K| = β[(α+β)µ−2α/3−β] ≤

αβ/3 ≤ A, condition (1) is fulfilled. On the other hand, since

|B| − |L| − |M | = α

[
2

3
− (α+ β)

(
µ− 2

3

)]
≥ 0,

one of the conditions (a) and (b) is satisfied. Therefore, by Theorem 3.1, we obtain
ρ = A+B = (2α+ β)/3. �

As an application of our results, we finally treat the case when K,L and M are not
necessarily real numbers.
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Theorem 4.2. Let 2/3 ≤ µ ≤ 1 and α, β ∈ (0, 1]. For each function f(z) = z + a2z
2 +

a3z
3 + . . . in SCC(α, β), then the inequality

|a3 − µa2
2| ≤

2α+ β

3

holds. Furthermore, each inequality is sharp in the sense that there is a function f ∈
SCC0(α, β) for which equality holds.

This theorem means that the inequality in Theorem 4.1 is still valid for the full class
SCC(α, β) in the case when 2/3 ≤ µ ≤ 1. It is naturally expected that the same thing
can be said to an arbitrary µ ∈ R. Indeed, the case when α = β = 1 was confirmed by
Eenigenburg and Silvia [4].

Proof. We use the notation given by (4.1) and set ργ(µ) = ρ(ϕβ, ϕα,γ, µ).
Case 1: µ = 2/3. In this case, K = β2/3 > 0 and Mγ = 0. Therefore,

Q(s, t) = max
θ∈R

|Ks2 + Lγt
2e2iθ| = Ks2 + |Lγ|t2,

and thus, P (s, t) = (K − A)s2 + (|Lγ| − Bγ)t
2. Since K − A = −β(1 − β)/3 ≤ 0 and

|Lγ| − Bγ = −(2α/3) cos(γ/α)(1 − sin(γ/α)) ≤ 0, we see that P (s, t) ≤ P (0, 0) = 0. By
(2.9), we obtain

ργ(2/3) = A+Bγ =
2α cos(γ/α) + β

3

≤ 2α+ β

3
= ρ0(2/3).

Case 2: µ = 1. In this case, K = 0 and Mγ < 0. Therefore,

Q(s, t) = max
θ∈R

|2Mγste
iθ + Lγt

2e2iθ| = −2Mγst+ |Lγ|t2

and thus, P (s, t) = −As2 − 2Mγst + (|Lγ| − Bγ)t
2. We write x = cos(γ/α) and see that

|Lγ| = (αx/3)
√

4− (4− α2)x2 < 2αx/3 = Bγ. We now investigate the descriminant

D = A(Bγ − |Lγ|)−M2
γ =

αβx

9

(
2−

√
4− (4− α2)x2 − αβx

)
.

Since

D ≥ 0 ⇔ (2− αβx)2 ≥ 4− (4− α2)x2

⇔ x ≥ x0 :=
αβ

1− α2(1− β2)/4
.

Note that 0 < x0 ≤ 1. When x ≥ x0, we obtain P (s, t) ≤ P (0, 0) = 0. When 0 < x < x0,
since the inequality |Mγ| = αβx/3 < β/3 = A − |K| holds, Proposition 3.4 implies that
P (s, t) ≤ P (|Mγ|/A, 1) = P (αx, 1) = |Lγ| − Bγ + M2

γ/A. Summarizing the above, we
obtain

(4.2) ργ(1) =


2αx+ β

3
if x ≥ x0

2αx
√

1− (1− α2/4)x2 + α2βx2 + β

3
if x < x0,
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where x = cos(γ/α). We now claim that ργ(1) ≤ ρ0(1) = (2α+ β)/3 holds for any γ with

x = cos(γ/α) < x0. The claim is equivalent to 2αx
√

1− (1− α2/4)x2 ≤ 2α− α2βx2. We
compute

(2− αβx2)2 −
(
2x

√
1− (1− α2/4)x2

)2

= (4− α2 + α2β2)x4 − 4(1 + αβ)x2 + 4

= (4− α2 + α2β2)

(
x2 − 2(1 + αβ)

4− α2 + α2β2

)2

+
4(3− α2 − 2αβ)

4− α2 + α2β2
.

The last term is obviously non-negative, and thus, the claim has been confirmed.
Case 3: 2/3 < µ < 1. Choose positive numbers s and t so that s + t = 1 and

µ = 2s/3 + t. By Lemma 2.1 and the previous two cases, we conclude that

ργ(µ) = ργ(2s/3 + t) ≤ sργ(2/3) + tργ(1) ≤ 2α+ β

3
.

Thus, we have shown that ργ(µ) ≤ (2α + β)/3 for 2/3 ≤ µ ≤ 1 and for γ ∈
(−πα/2, πα/2). The last assertion in the theorem is a direct consequence of the rela-
tion ρ0(µ) = (2α+ β)/3. �

We end the article with the remark that the quantity ργ(1) is not necessarily a monotone
function of x = cos(γ/α) even when β = 1 as one can check it by (4.2). The lack of
monotonicity in γ seems to cause difficulty in verification of the inequality ργ(µ) ≤ ρ0(µ)
for an arbitrary µ.
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to-convex functions, Publ. Inst. Math. (Beograd) (N. S.) 66 (1992), 18–26.
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10. , On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49 (1987), 420–

433.
11. W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann.

Univ. Mariae Curie-Sk lodowska, Sectio A 45 (1991), 89–97.
12. , A unified treatment of some special classes of univalent functions, Proceedings of the Con-

ference on Complex Analysis (Z. Li, F. Ren, L. Yang, and S. Zhang, eds.), International Press Inc.,
1992, pp. 157–169.

18



13. , Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl. 205
(1997), 537–553.

14. Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.

Department of Mathematics Education, Daegu National University of Education,
1797-6 Daemyong 2 dong, Namgu, Daegu 705-715, Korea

E-mail address: choijh@dnue.ac.kr

Department of Mathematics, College of Education, Yeungnam University, 214-1 Dae-
dong Gyongsan 712-749, Korea

E-mail address: kimyc@yu.ac.kr

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-
Hiroshima, 739-8526 Japan

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp

19


