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Abstract In this note, we will show that, for every structurally finite tran-
scendental entire function, the Hausdorfl dimension of its Julia set is two.

1 Introduction and main results

In [8] we defined structurally finite entire functions and proved that every
such f(z) of type (p,q) can be written as an indefinite integral

with polynomials Q(z) of degree ¢ and P(z) of degree p. For the definitions
and details, see [8] and [9].

Since we are interested in dynamical properties of such an f(z), we may
assume, taking conjugation by a similarlity if necessary, that

f(z) = a/oz P(t)e?Wdt +b

with monic polynomials P and @) of degrees p and ¢q. Here we exclude the

case of linear polynomials (the case that p = 0,¢ = 0). In the sequel, we

denote by f*(z) the k-th iteration of f(z) and by J; the Julia set of f(2). See

for instance [3] for the basic facts on dynamical properties of entire functions.
Now in this note, we give a proof of the following

Theorem 1 For every transcendental structurally finite entire function f(z),
the Hausdorff dimension of J¢ is two.



Remark Compare with a theorem of Stallard ([5] II): For every transcenden-
tal entire function f(z) with a bounded set of singular values, the Hausdorff
dimension of Jy is greater than 1. (Here we say that « is a singlar value of
f(2) if every neighborbood of « is not evenly covered under f : C — C.)

Also, we note the following

Proposition 2 Let f(z) be a (not necessarily transcendental) structurally
finite entire function. If f(z) is hyperbolic, namely if the union ST(f) of
the orbits of all singular values is relatively compact in C and the distance
between ST(f) and J; is positive, then the Julia set J¢ has vanishing area.

Devaney and Keen proved in [1] that, if the Schwarzian derivative of a
meromorophic f(z) is a polynomial (in particular, if f(z) is a structurally
finite entire function) and if f(z) is hyperbolic, then the Julia set J; has
vanishing area. The proof of Proposition 2 is essentially the same as those
in [1] and [2]. Hence we omit the proof. Also see [6].
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2 Proof of the main theorem

Now to prove theorem 1, it suffices to show that the Hausdorff dimension of
the set of escaping points of f(z) in

- T
= {z=re" 0,10] < —
{z=re”|r> ,\\_4q}

is two, because f(z) is in the Speiser class (cf. for instance, [3]).
Fix a positive constant € (< 1/4). Next set

Qo(t) = Re Q(et) = cos(¢f) t4 + - - -

and
2

|€Q(ei9t) |2

P/Q/_PQ// / P
rat) = | (S ) €
for every 6 with |f| < m/4q. Then, unless Ry(t) equals identically to 0, we
can write Ry(t) as

Ag(t) 2q,0)
By(t)

with real polynomials Ay(t) and By(t) of degree at most 2(p + 4¢g — 6) (> 0

unless Ry equals identically to 0) and of degree 2(6¢ — 6) > 0, respectively.

Since the term of the highest degree of Ay(t) and that of By(t) have positive

coefficients independent of #, we can find a finite ¢, such that
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Ry(t) >0
unless Ry(t) equals identically to 0, and

Ry(t) < 2cs0 12(p—24) ,2Qo ()
for every 0 with |#| < 7/4q and every t not less than ¢, where we set

Coo = max< 1, lim t_2(p_2q)—A0(t)
00 ’t—>+oo Bg(t) )

which is independent of 6 as noted above. (Here the first condition is satisfied
for every sufficiently large ¢, since

(ApBy — AgBy) + 249 ByQy 22 ()

Rolt) = (Bp)?

and the term of highest degree of
(ApBy — AgBy) + 249 ByQy

is that of 24y By, which has a positive coefficient depending only on f(z)
and cos ¢f.)
Also fix an R so large that R satisfies the following inequalities:

1. R> 2q(32q/m) (> 8mq > 16q), R > 1e8/2
2. R > 4q/e,
3. R > ty, and

4. for every z € Il with |z| > R,

(a)

max {g(|z| + 1)q—1,1} <1Q' ()l < 2q(J2|-1)"", \%8 = !z!Qi 1
(b) P(2)
(c)

|Z|pfq’eQ(Z)| > 1,



M ’Z‘piq+1|€Q(z)| > max {€Z|q/27 4|CLP(Z)@Q(Z)| } 7

2q 2]
P(2)eQ)
M > 47 (> 1)
(lz[ + 1)
Now, set
S=IINn{|z| > R+ 1},
and

T =Sn fH1).

Definition We say that the image f(B) of a disk B is nearly disk-shaped
with respect to € if f/(zp) # 0 and the distortion function

V(f, B) = sup M _ fI(ZB)

z€EB,z#zp Z—2ZB

of f(z) on B is bounded by €|f'(zg)|. Here and in the sequel, “disks” always
mean closed disks and zp is the center of a disk B.

Lemma 3 For every disk B with center zg € S and radius |zg|~?, the image
f(B) is nearly disk-shaped (with respect to €).
In particular, f(B) contains a disk with center f(zp) and radius

3 _
Z\f'(ZB)HZB! i

and is contained in a disk with the same center and radius

21 ozl

Proof. First we note that, if z € B, then |z — 25| < |z5|77(< 1). Hence by
the condition 4-(b) for R, we have

f"(z) P'(z)

_ _ / q—1
Ve (= [58]) =[5 + @) <2l
on B, which implies by the condition 1 for R that
hog FELN | [ E8 ] < 2ot zal0 = 2alzn (< 1),




and hence that

f'(2)
f'(zB)

Thus we conclude that

/'(2)
()

4

1
—1‘ <2‘lo ‘ < 4qlzp|7t < -

f(2) = f(z5) = f'(25) (<z —2p)+ / e(t)dt)

with an error function €(¢) such that (by the condition 2 for R)
le(t)] < 4q|zp| ™ <¢
on B, which implies that the image f(B) is nearly disk-shaped with respect

to €. In particular, since |e(t)| < 1/4, we conclude the second assertion. m

Lemma 4 For every z € S, we can represent f(z) as

gzpqﬂ(l + ef(z))eQ(z)
with an error function ef(z) satisfying
&
le(2)] <

2]

for every z with |z| > R, where (and in the proof below) Cj are constants
depending only on f(z) and R.

Proof. First, fix a z € S. By the condition 4-(a) for R, |Q'(z)| > 1 on the
ray '
l,={te” |R<t<|z|, 0 =argz}.

Integrating on this ray, we have

f@)::aA mw&@ﬁ+0wy+b

= a {g,(?) eQ“)L —a /Z <§)I (1)e®Ddt + C(0) + b

(

P(z) QR _ P'Q — PQ" 2)eR() 2
e —a(FETTE) (e 4 1)
+C(0) + C(0) + b,

a



where

I(z)=a /Z (M)I (t)eQ(t)dt,

R o
c(9) = a/ P(re®)eRe ) ey,
0
and
. P(Re®) o (peio P'Q" — PQ" i0y Q(Re?
C(Q):—CLW(‘J ( )+6L W (RG )6 ( )
Now for the first term in the right hand side, we have an estimate
a — Zpatl
Q=) ¢

and similarly the second term is bounded by Cj|zP~21+1@(3)| on S with

suitable Cy and C3. (Here we assume that C3 =0 if p =0 and ¢ = 1.)
Next, by the definition of ¢y and the condition 3 for R, Ry(t) is strictly

increasing on [tg, +00) for every 6 with || < 7/4q. Hence, we conclude that

' P(z) a < Gyl

2|
1(2)] < a / VRaB)dt < Cy|22+1690)
R

with a suitable Cy. (We assume that Cy = 0if p < 1 and ¢ = 1.) Finally,
|C(0)| and |C(8)| are continuous on [—7/(4q), 7/(4q)], and hence are bounded
by a constant Cj for every such 6. Thus, by noting the condition 4-(c) for
R, we have a desired estimate by setting C; = Cy + C3 + Cy +2C5 + |b|. =

Now we take another Ry > R + 27 such that

Cl < . T < 1
-—_— S — —
Rl 8q 2

and, if p — g+ 1 # 0, then

1.

R, sin 4.

_— >
8lp — q + 1]

In particular, Lemma 4 and the condition 1 for R; give that

2
W pmojea) < (a)] < 22 oo
q



for every z with |z| > R;. Furthermore, fixing a value A of arga, we have by
Lemma 4 a continuous branch of the arg f(z) on S such that

larg f(2) — [(p —q+1)0 +Im Q(z) + A]| <sin™! (ﬁ) :

2|
Hence we have the following

Lemma 5 T contains

T'={zcll||z| > Ry, |(p—q+1)0+ImQ(z)+A—2m7r|§8—7;,m€Z}.

Proof. 1f z € T’ the condition 1 for R; gives that

: O T T
arg f(z) — 2mn| < sin™! (—) + — < —
| (2) | EIAETRET
with some m € Z, which implies that f(z) € II. Thus T contains T". [

Ifp—qg+1=0,set

T"={z€Il||z| > Ry, ImQ(z) + A —2mn| < %, m € 7},
q

which is clearly contained in T".

Ifp—qg+1#0, forevery j=—=2p—q+1|,--,2lp—qg+ 1| —1, set
2+
7 16glp —q+ 1)
and
. T 0
S‘:{re’9€H|r2R1,B-——§9§B-—|——}.
! 7 16qlp —q+1| 7 16qlp — g+ 1|

Then we have the following

Lemma 6 Ifp—q+1+#0, then

2lp—q+1|-1

J s

Jj=—2[p—q+1|

is coincident with 8" = SN {|z| > R}, and T' N S; contains

T ={z€S] |(p—q+1)Bj+1mQ(z)+A—2mw|g%},mezy



Proof. The first assertion is clear. Next if z € T, then

(p—q+1)0+ImQ(z) + A—2mn]|
< l+|(]D—q+1)Bj+ImQ(z)+A—2m7r| < 81(]’

16¢
which implies that z € T". [ ]
Thus set
2lp—q+1|-1
/! /!
= |J 17
j==2[p—q+1|
if p—q+1+#0, and we conclude that 7" C T".
Next set
_ T
m= 324

and T, be the subset of the image Q(7") of T” under ((z) consisiting of
all such z that the disk with center z and radius 7, is contained in Q(7").
Further set

T°=Q YT.)NS".

Then we have the following

Lemma 7 FEvery disk B with center zg € T° and radius |zg|™9 is contained
inT".

Proof. By the condition 4-(a) for R, we have (as in the proof of Lemma 3)
that

Q'(2)
Q'(zp)
for every z € B, which implies that the distortion of () on B satisfies

log

< Jenl " e [V(Q)(2) < e IN(Q)()] < 2al25]”

V(Q, B) < 4q|zp| ™' < e
Thus Q(B) is nearly disk-shaped (with respect to €), and in particular, Q(B)
is contained in a disk with center Q(zp) € T, and radius
5 )
1@ Collzsl < Zalzsl < m

by the conditions 4-(a) and 1 for R. Hence we conclude that Q(B) C Q(T"),
which means that B C T". ]

Here, we recall the following well-known covering lemma. See for instance,
[7] Lemma in 1.6 of Chapter I.



Lemma 8 Let X be a measurable set in C, and B = {B;} be a countable
covering of X by disks with bounded radii. Then we can find an absolute
constant C (depending neither on X nor on B) and a subset {B;, } of B such
that Bj, are mutually disjoint and

k

where m(FE) is the the area fE dxdy for every measurable set E in C.

Lemma 9 There is a § > 0 such that, for every disk D with center zp € S’
and radius v(D) greater than 27, we have

p(DNT°, D) > 6.

Here and in the sequel, the density of a measurable subset X of a mesurable
set Y is defined by

p(X, Y) = A

Proof. First note that T, contains the intersections

E — U Sj* N T';trips7

J

of
Sy ={z € Q(S)) | d(z,C = Q(5))) =2 m}

(where d(z, ) is the distance from z to the set E) and periodic parallel strips
with period 27;

Sstrips T T
Tstrir :{I(p—q+1)3j+ImZ+A—2m7T|§3—2q<:@_”1)7mez}

for every j. Hence we can find a 6’ > 0 such that
p(D*NE,D*) > ¢

for every disk D* with center in Q(S") and radius greater than 2.
Indeed, for every z € Q(5’) and r > 27, set

F(z,r)=p(D(z,7r) N E,D(z,1)),

where D(z,r) is the disk with center z and radius . Then F(z,r) is always
positive by the condition 2 for Ry, and continuous on Q(S") x [27, +00). Also

9



it is easy to see that F'(z,r) is bounded away from 0 when |z| or r tends to
+00.

In particular, if ¢ = 1 (and hence Q(z) = z), then the assertion of Lemma
9 is clear from the definition of T° with 6 = ¢’. So we consider the case that
q > 1. Let D’ be the disk with center zp and radius r(D) — 1/2. Take a
covering of the compact set D' NS’ by a finite number of open disks with
center in D' N S and radius 1/2. Then by the covering lemma (Lemma 8),
we can find a finite set {B,,}_, consisting of disjoint disks with center z,,
in D'NS” and radius 1/2 satisfying that D = UM_| B,, is contained in D and

m(D) > Cm(D'NnS").

On the other hand, it is clear from the shape of S’ that there is a positive
constant &y depending only on S’ such that

p(D// m S/,D”) Z 50

for every D" with center in S" and radius greater than 27 — 1/2.
Hence we conclude that

2
p(D, D) > Cp(D' N §', D) > 6 = (1 - (ﬁ)) .

Now for every B,,, we can show as in the proof of Lemma 7 that Q(B,,)
is nearly disk-shaped (with respect to €), and in particular, Q(B,,) contains
a disk with center Q(z,,) and radius

3 13
Z|Q(Zm)|'§>ﬁ

3 3
C]\Zm\qfl > TZR <> 1—%8#(1 > 3q7r) > 27

by the conditions 1 and 4-(a) for R, and is contained in a disk with the
same center and radius (5/8)|Q’(zg)|. (Here recall that ¢ > 2.) Hence, we
conclude that

s e = () 8
iy <

on D,,, we conclude that
3\ 4
p(B,NT° B,,) > (g) J.

10



Thus in the case that ¢ > 1, we have the assertion with
3\ 4
0= (—) 0'61.
5

Now we give a proof of the main theorem.

For this purpose, take a disk B with center zg € T" and radius |zg|™9
arbitrarily. Then we have shown in Lemma 3 that f(B) is nearly disk-shaped
(with respect to €), and contains a disk B’ with center f(zp) € S’, whose
absolute value can be written as

a —_ z
%vMPWWJ+w@wwmw\

with |ef(zp)| < 1/2 by Lemma 4 and the condition 1 for Ry, and radius

3 1 5
r(B) = 1f Go)llzsl ™ = 5 > 217/ ()l 28]

by the condition 4-(d) for R, and is contained in a disk B” with the same

center and radius 5

L1/ Ga)llz]

Note that r(B’) is greater than 27 by the condition 4-(d) for R and that the
distance between B’ and C — f(B) is greater than 1/8 by the definition.
In particular, Lemma 9 gives that

p(B'NT° B >,
which implies that

>

p(B'NT°, B") >
Thus we conclude the following

Lemma 10 There is a positive constant §" depending only on f(z) and Ry
such that, for every disk B with center zg € T" and radius |zg|™?, there exists
a packing { B, }M_, of T' N f(B) with a finite number of disjoint disks B, in
T"(C T") with center zy, in T° and radius |zm,|~9 such that

(o) oo

Moreover, for every m,




Proof. First, we cover T° by open disks with center z € T° and radius |z|79.
Then since the above B’ is compact, we can select a finite cover of B’ NT°.
Then by Lemmas 7 and 8, we can find a packing {B,,}*_, of T” by a finite
number of disks B,, with center z,, € T° and radius |z,,|~? such that

M
I o " 1
m=1

Here note that, since |z,,|7? < 1/8 by the condition 1 for R, every such
disk B,, is contained in f(B), and hence {B,,}¥_, is actually a packing of
T" N f(B). Thus we have the first assertion with §” = C¢§/4.

Next, every point z in f(B), Lemmas 3, 4 and the conditions 4-(d) for R,
1 for Ry imply that

1G> 1)~ 1 Galsl=e > LE2,

which shows the second assertion. ]

Now we define a family & consisting of a finite number of disjoint compact
sets inductively. For every B as in Lemma 10, we denote by P(f(B)) the
packing of f(B) obtained in Lemma 10. Fix such a disk B, and set & = {B.}.
Define

E={G|GCFe&_, [HG)eP(ffF)}

Then

Sy

Ge&y

consists of escaping points whose orbit is contained in S, and Lemma 10

implies that
o (( U f’“(G)> ,fk<F>) > 5
Ge&y,GCF

for every k and F' € &,_;.
Here we note the following distortion lemma.

Lemma 11 (Distortion Lemma) Let {D;}7_ be a sequence of disks with
radii ¢; and {f;} be a sequence of univalent functions on neighborhoods of
D;. Assume that {; < {y < 1/5,

fi(Dj) D Dja, L+ |fi(2)] > 1

12



on Dj, and
;- max [N(£;)(2)] < e
z€Dj

for every 5. Then letting

¢ = Pno = (fno---o fo)_1 :D=Dpy — D6 = ¢(Dny1),
we have )
¢'(2)
¢'(2p)
on D, and hence the distortion V (¢, D) of ¢(z) is bounded by €.

—1‘<e

Proof. Let wy be the center of D, and on D we set
Sng=(fao-0fi)h (=0, .n)
and D) = ¢,,;(D). Then since
0 (2)| < by Ly
on D, the diameter d(D}) of Dj is not greater than
o 2 < G20y).

On the other hand,

¢d(w) 1 (f5) (n(wo))
¢’ (wo) ]1;[0 (f5) (fnj(w))’

and each factor on D has the following estimate:

(£ (Dnj(wo)) | | [omat0) f7(2)
(f5) (fn5(w)) ‘ - /¢n,]-(w) fi (@) “
< d(D)) max [N(f;)(2)] < 2657

log

Thus we have
" i 2€0€
< oIt

which implies the assertion as in the proof of Lemma 3, since 2¢y/(1 — o)
1/2 if £y < 1/5.

‘log v

13
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Lemma 12 We can find a 6, > 0 independent of k such that
p (( U G) ﬂF,F) =
Ge&y

Proof. Fix k and F € &, arbitrarity. Then for every G, € & such
that Gy C F, we can find a sequence of elements Gy_; of &; (j = 0,--- , k)
such that D, = B, and for every other j, D; = f/(Gy—;) is a disk in
P(f7(Gryj-1)). Let z; be the center of D;, (and hence |z;| 77 is the radius of
D;). Then by the condition 4-(d) for R gives that

2 I PRIl +1)79) > 1

and the conditions 2 and 4-(b) for R give that

for every F € &._;.

|25 1N (f(2)] < 2q]2] 7" < e

for every z € D;.
Thus by the above distortion lemma, we conclude that

3 —k\/ —k\/ 5 —k\/
AT <) ] < 1) ()]

on Dy, = f¥(Gy) for every Gy € & contained in F € &,_,. Hence we have
the assertion with 6, = (3/5)%9”. |

Finally, set

2
dy = ———

YrH(6)

with ¢(z) = 1 e*'/2. Note that 1(z) > z and ¢'(z) > 1 on [6,+00). And for
the diameter d(G) of every G € &, we have the following

Lemma 13 For every G € &,

Proof. First, |zp,| > R > ¢(6) by the condition 1 for R. Next since, by
Lemma 10, every point in f(B) has an absolute value greater than |f(zp)|/2
for every disk B with center zp in S” and radius |z5| ™7, we can see inductively
that the inequality

|10y > 9" (6)

14



for the center zpi-—1(p) of every disk f*(F) with F € &,_; implies

| f(zpe-1(m))|
2

by the condition 4-(d) for R, and hence
r(f5(G)) = |f (@)™ < 1/*(6),
for every f*(G) € P(f*(F)). Since clearly |(f7*) ()| < 1 on f*(G), we

conclude the assertion. ]

|zpr )| > > (|zp-1 ) |) > F(6)

Summing up, we have obtained a sequence {&} such that every G € &
is contained in a F' € &,_1 and every G € &, contains at least one element of
Err1- We have also found constants di and ¢, such that

p<<U G) ﬂF,F) >6,>0, d(G)<dy,

Ge&y

k
d 0, ————=—0
FT log(l/d) T
for every k and G in &. Hence the Fundamental lemma in [2] (also cf. [3]
Lemma 3.2.7) shows that the Hausdorff dimension of E is two.
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