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Abstract In this note, we will show that, for every structurally finite tran-
scendental entire function, the Hausdorff dimension of its Julia set is two.

1 Introduction and main results

In [8] we defined structurally finite entire functions and proved that every
such f(z) of type (p, q) can be written as an indefinite integral

f(z) =

∫ z

P (t)eQ(t)dt

with polynomials Q(z) of degree q and P (z) of degree p. For the definitions
and details, see [8] and [9].

Since we are interested in dynamical properties of such an f(z), we may
assume, taking conjugation by a similarlity if necessary, that

f(z) = a

∫ z

0

P (t)eQ(t)dt + b

with monic polynomials P and Q of degrees p and q. Here we exclude the
case of linear polynomials (the case that p = 0, q = 0). In the sequel, we
denote by fk(z) the k-th iteration of f(z) and by Jf the Julia set of f(z). See
for instance [3] for the basic facts on dynamical properties of entire functions.

Now in this note, we give a proof of the following

Theorem 1 For every transcendental structurally finite entire function f(z),
the Hausdorff dimension of Jf is two.
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Remark Compare with a theorem of Stallard ([5] II): For every transcenden-
tal entire function f(z) with a bounded set of singular values, the Hausdorff
dimension of Jf is greater than 1. (Here we say that α is a singlar value of
f(z) if every neighborbood of α is not evenly covered under f : C→ C.)

Also, we note the following

Proposition 2 Let f(z) be a (not necessarily transcendental) structurally
finite entire function. If f(z) is hyperbolic, namely if the union S+(f) of
the orbits of all singular values is relatively compact in C and the distance
between S+(f) and Jf is positive, then the Julia set Jf has vanishing area.

Devaney and Keen proved in [1] that, if the Schwarzian derivative of a
meromorophic f(z) is a polynomial (in particular, if f(z) is a structurally
finite entire function) and if f(z) is hyperbolic, then the Julia set Jf has
vanishing area. The proof of Proposition 2 is essentially the same as those
in [1] and [2]. Hence we omit the proof. Also see [6].

Acknowledgment: The author would like to express profound thanks
to Professor Yasuhiro Gotoh for valuable comments.

2 Proof of the main theorem

Now to prove theorem 1, it suffices to show that the Hausdorff dimension of
the set of escaping points of f(z) in

Π = {z = reiθ | r > 0, |θ| ≤ π

4q
}

is two, because f(z) is in the Speiser class (cf. for instance, [3]).
Fix a positive constant ε (< 1/4). Next set

Qθ(t) = Re Q(eiθt) = cos(qθ) tq + · · ·
and

Rθ(t) =

∣∣∣∣
(

P ′Q′ − PQ′′

(Q′)3

)′
(eiθt)

∣∣∣∣
2

|eQ(eiθt)|2

for every θ with |θ| ≤ π/4q. Then, unless Rθ(t) equals identically to 0, we
can write Rθ(t) as

Aθ(t)

Bθ(t)
e2Qθ(t)

with real polynomials Aθ(t) and Bθ(t) of degree at most 2(p + 4q − 6) (≥ 0
unless Rθ equals identically to 0) and of degree 2(6q − 6) ≥ 0, respectively.
Since the term of the highest degree of Aθ(t) and that of Bθ(t) have positive
coefficients independent of θ, we can find a finite t0 such that
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1.
R′

θ(t) > 0

unless Rθ(t) equals identically to 0, and

2.
Rθ(t) ≤ 2c∞ t2(p−2q)e2Qθ(t)

for every θ with |θ| ≤ π/4q and every t not less than t0, where we set

c∞ = max

{
1, lim

t→+∞
t−2(p−2q) Aθ(t)

Bθ(t)

}
,

which is independent of θ as noted above. (Here the first condition is satisfied
for every sufficiently large t, since

R′
θ(t) =

(A′
θBθ − AθB

′
θ) + 2AθBθQ

′
θ

(Bθ)2
e2Qθ(t),

and the term of highest degree of

(A′
θBθ − AθB

′
θ) + 2AθBθQ

′
θ

is that of 2AθBθQ
′
θ which has a positive coefficient depending only on f(z)

and cos qθ.)
Also fix an R so large that R satisfies the following inequalities:

1. R > 5
2
q (32q/π) (> 8πq > 16q), R > 1

2
e6q/2

2. R > 4q/ε,

3. R > t0, and

4. for every z ∈ Π with |z| ≥ R,

(a)

max
{q

2
(|z|+ 1)q−1, 1

}
< |Q′(z)| < 2q(|z|−1)q−1,

∣∣∣∣
Q′′(z)

Q′(z)

∣∣∣∣ <
2q

|z|+ 1

(b) ∣∣∣∣
P ′(z)

P (z)
+ Q′(z)

∣∣∣∣ < 2q(|z| − 1)q−1,

(c)
|z|p−q|eQ(z)| > 1,
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(d)
|a|
2q
|z|p−q+1|eQ(z)| > max

{
e|z|

q/2,
4|aP (z)eQ(z)|

|z|q
}

,

|aP (z)eQ(z)|
(|z|+ 1)q

> 4π (> 1).

Now, set
S = Π ∩ {|z| ≥ R + 1},

and
T = S ∩ f−1(Π).

Definition We say that the image f(B) of a disk B is nearly disk-shaped
with respect to ε if f ′(zB) 6= 0 and the distortion function

V (f, B) = sup
z∈B,z 6=zB

∣∣∣∣
f(z)− f(zB)

z − zB

− f ′(zB)

∣∣∣∣

of f(z) on B is bounded by ε|f ′(zB)|. Here and in the sequel, ”disks” always
mean closed disks and zB is the center of a disk B.

Lemma 3 For every disk B with center zB ∈ S and radius |zB|−q, the image
f(B) is nearly disk-shaped (with respect to ε).

In particular, f(B) contains a disk with center f(zB) and radius

3

4
|f ′(zB)||zB|−q,

and is contained in a disk with the same center and radius

5

4
|f ′(zB)||zB|−q.

Proof. First we note that, if z ∈ B, then |z − zB| ≤ |zB|−q (< 1). Hence by
the condition 4-(b) for R, we have

|N(f)(z)|
(

=

∣∣∣∣
f ′′(z)

f ′(z)

∣∣∣∣
)

=

∣∣∣∣
P ′(z)

P (z)
+ Q′(z)

∣∣∣∣ < 2q|zB|q−1

on B, which implies by the condition 1 for R that

∣∣∣∣log
f ′(z)

f ′(zB)

∣∣∣∣ =

∣∣∣∣
∫ z

zB

f ′′(t)
f ′(t)

dt

∣∣∣∣ < 2q|zB|q−1 · |zB|−q = 2q|zB|−1(< 1/8),
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and hence that
∣∣∣∣

f ′(z)

f ′(zB)
− 1

∣∣∣∣ < 2

∣∣∣∣log
f ′(z)

f ′(zB)

∣∣∣∣ < 4q|zB|−1 <
1

4
.

Thus we conclude that

f(z)− f(zB) = f ′(zB)

(
(z − zB) +

∫ z

zB

ε(t)dt

)

with an error function ε(t) such that (by the condition 2 for R)

|ε(t)| < 4q|zB|−1 < ε

on B, which implies that the image f(B) is nearly disk-shaped with respect
to ε. In particular, since |ε(t)| < 1/4, we conclude the second assertion.

Lemma 4 For every z ∈ S, we can represent f(z) as

a

q
zp−q+1(1 + ef (z))eQ(z)

with an error function ef (z) satisfying

|ef (z)| ≤ C1

|z|
for every z with |z| ≥ R, where (and in the proof below) Ck are constants
depending only on f(z) and R.

Proof. First, fix a z ∈ S. By the condition 4-(a) for R, |Q′(z)| > 1 on the
ray

`z = {teiθ | R ≤ t ≤ |z|, θ = arg z}.
Integrating on this ray, we have

f(z) = a

∫

`z

P (t)eQ(t)dt + C(θ) + b

= a

[
P (t)

Q′(t)
eQ(t)

]z

R

− a

∫

`z

(
P

Q′

)′
(t)eQ(t)dt + C(θ) + b

= a
P (z)

Q′(z)
eQ(z) − a

(
P ′Q′ − PQ′′

(Q′)3

)
(z)eQ(z) + I(z)

+C(θ) + C̃(θ) + b,
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where

I(z) = a

∫

`z

(
P ′Q′ − PQ′′

(Q′)3

)′
(t)eQ(t)dt,

C(θ) = a

∫ R

0

P (reiθ)eQ(reiθ)eiθdr,

and

C̃(θ) = −a
P (Reiθ)

Q′(Reiθ)
eQ(Reiθ) + a

(
P ′Q′ − PQ′′

(Q′)3

)
(Reiθ)eQ(Reiθ).

Now for the first term in the right hand side, we have an estimate

∣∣∣∣a
P (z)

Q′(z)
− a

q
zp−q+1

∣∣∣∣ ≤ C2|z|p−q

and similarly the second term is bounded by C3|zp−2q+1eQ(z)|, on S with
suitable C2 and C3. (Here we assume that C3 = 0 if p = 0 and q = 1.)

Next, by the definition of t0 and the condition 3 for R, Rθ(t) is strictly
increasing on [t0, +∞) for every θ with |θ| ≤ π/4q. Hence, we conclude that

|I(z)| ≤ |a|
∫ |z|

R

√
Rθ(t)dt ≤ C4|zp−2q+1eQ(z)|

with a suitable C4. (We assume that C4 = 0 if p ≤ 1 and q = 1.) Finally,
|C(θ)| and |C̃(θ)| are continuous on [−π/(4q), π/(4q)], and hence are bounded
by a constant C5 for every such θ. Thus, by noting the condition 4-(c) for
R, we have a desired estimate by setting C1 = C2 + C3 + C4 + 2C5 + |b|.

Now we take another R1 > R + 2π such that

1.
C1

R1

< sin
π

8q

(
<

1

2

)

and, if p− q + 1 6= 0, then

2.
R1 sin

π

8|p− q + 1| > 4π.

In particular, Lemma 4 and the condition 1 for R1 give that

|a|
2q
|z|p−q+1|eQ(z)| < |f(z)| < 2|a|

q
|z|p−q+1|eQ(z)|
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for every z with |z| ≥ R1. Furthermore, fixing a value A of arg a, we have by
Lemma 4 a continuous branch of the arg f(z) on S such that

| arg f(z)− [(p− q + 1)θ + Im Q(z) + A]| ≤ sin−1

(
C1

|z|
)

.

Hence we have the following

Lemma 5 T contains

T ′ = {z ∈ Π | |z| ≥ R1, |(p− q + 1)θ + Im Q(z) + A− 2mπ| ≤ π

8q
, m ∈ Z}.

Proof. If z ∈ T ′, the condition 1 for R1 gives that

| arg f(z)− 2mπ| < sin−1

(
C1

|z|
)

+
π

8q
<

π

4q

with some m ∈ Z, which implies that f(z) ∈ Π. Thus T contains T ′.

If p− q + 1 = 0, set

T ′′ = {z ∈ Π | |z| ≥ R1, |Im Q(z) + A− 2mπ| ≤ π

16q
, m ∈ Z},

which is clearly contained in T ′.
If p− q + 1 6= 0, for every j = −2|p− q + 1|, · · · , 2|p− q + 1| − 1, set

Bj =
(2j + 1)π

16q|p− q + 1| ,

and

Sj =

{
reiθ ∈ Π | r ≥ R1, Bj − π

16q|p− q + 1| ≤ θ ≤ Bj +
π

16q|p− q + 1|
}

.

Then we have the following

Lemma 6 If p− q + 1 6= 0, then

2|p−q+1|−1⋃

j=−2|p−q+1|
Sj

is coincident with S ′ = S ∩ {|z| ≥ R1}, and T ′ ∩ Sj contains

T ′′
j = {z ∈ Sj | |(p− q + 1)Bj + Im Q(z) + A− 2mπ| ≤ π

16q
, m ∈ Z}.
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Proof. The first assertion is clear. Next if z ∈ T ′′
j , then

|(p− q + 1)θ + Im Q(z) + A− 2mπ|
<

π

16q
+ |(p− q + 1)Bj + Im Q(z) + A− 2mπ| ≤ π

8q
,

which implies that z ∈ T ′.

Thus set

T ′′ =
2|p−q+1|−1⋃

j=−2|p−q+1|
T ′′

j ,

if p− q + 1 6= 0, and we conclude that T ′′ ⊂ T ′.
Next set

η1 =
π

32q

and T∗ be the subset of the image Q(T ′′) of T ′′ under Q(z) consisiting of
all such z that the disk with center z and radius η1 is contained in Q(T ′′).
Further set

T ◦ = Q−1(T∗) ∩ S ′.

Then we have the following

Lemma 7 Every disk B with center zB ∈ T ◦ and radius |zB|−q is contained
in T ′′.

Proof. By the condition 4-(a) for R, we have (as in the proof of Lemma 3)
that

∣∣∣∣log
Q′(z)

Q′(zB)

∣∣∣∣ ≤ |zB|−q max
z∈B

|N(Q)(z)| < max
z∈B

|N(Q)(z)| < 2q|zB|−1

for every z ∈ B, which implies that the distortion of Q on B satisfies

V (Q,B) < 4q|zB|−1 < ε.

Thus Q(B) is nearly disk-shaped (with respect to ε), and in particular, Q(B)
is contained in a disk with center Q(zB) ∈ T∗ and radius

5

4
|Q′(zB)||zB|−q <

5

2
q|zB|−1 < η1

by the conditions 4-(a) and 1 for R. Hence we conclude that Q(B) ⊂ Q(T ′′),
which means that B ⊂ T ′′.

Here, we recall the following well-known covering lemma. See for instance,
[7] Lemma in 1.6 of Chapter I.
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Lemma 8 Let X be a measurable set in C, and B = {Bj} be a countable
covering of X by disks with bounded radii. Then we can find an absolute
constant C (depending neither on X nor on B) and a subset {Bjk

} of B such
that Bjk

are mutually disjoint and

∑

k

m(Bjk
) ≥ Cm(X),

where m(E) is the the area
∫

E
dxdy for every measurable set E in C.

Lemma 9 There is a δ > 0 such that, for every disk D with center zD ∈ S ′

and radius r(D) greater than 2π, we have

ρ(D ∩ T ◦, D) ≥ δ.

Here and in the sequel, the density of a measurable subset X of a mesurable
set Y is defined by

ρ(X, Y ) =
m(X)

m(Y )
.

Proof. First note that T∗ contains the intersections

E =
⋃
j

S∗j ∩ T strips
j ,

of
S∗j = {z ∈ Q(Sj) | d(z,C−Q(Sj)) ≥ η1}

(where d(z, E) is the distance from z to the set E) and periodic parallel strips
with period 2π;

T strips
j =

{
|(p− q + 1)Bj + Im z + A− 2mπ| ≤ π

32q

(
=

π

16q
− η1

)
, m ∈ Z

}

for every j. Hence we can find a δ′ > 0 such that

ρ(D∗ ∩ E, D∗) ≥ δ′

for every disk D∗ with center in Q(S ′) and radius greater than 2π.
Indeed, for every z ∈ Q(S ′) and r ≥ 2π, set

F (z, r) = ρ(D(z, r) ∩ E, D(z, r)),

where D(z, r) is the disk with center z and radius r. Then F (z, r) is always
positive by the condition 2 for R1, and continuous on Q(S ′)× [2π, +∞). Also
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it is easy to see that F (z, r) is bounded away from 0 when |z| or r tends to
+∞.

In particular, if q = 1 (and hence Q(z) = z), then the assertion of Lemma
9 is clear from the definition of T ◦ with δ = δ′. So we consider the case that
q > 1. Let D′ be the disk with center zD and radius r(D) − 1/2. Take a
covering of the compact set D′ ∩ S ′ by a finite number of open disks with
center in D′ ∩ S ′ and radius 1/2. Then by the covering lemma (Lemma 8),
we can find a finite set {Bm}M

m=1 consisting of disjoint disks with center zm

in D′∩S ′ and radius 1/2 satisfying that D̃ = ∪M
m=1 Bm is contained in D and

m(D̃) ≥ C m(D′ ∩ S ′).

On the other hand, it is clear from the shape of S ′ that there is a positive
constant δ0 depending only on S ′ such that

ρ(D′′ ∩ S ′, D′′) ≥ δ0

for every D′′ with center in S ′ and radius greater than 2π − 1/2.
Hence we conclude that

ρ(D̃, D) ≥ Cρ(D′ ∩ S ′, D) ≥ δ1 =

(
1−

(
1

4π

))2

Cδ0.

Now for every Bm, we can show as in the proof of Lemma 7 that Q(Bm)
is nearly disk-shaped (with respect to ε), and in particular, Q(Bm) contains
a disk with center Q(zm) and radius

3

4
|Q′(zm)| · 1

2
>

3

16
q|zm|q−1 >

3q

16
R

(
>

3q

16
8πq > 3qπ

)
> 2π

by the conditions 1 and 4-(a) for R, and is contained in a disk with the
same center and radius (5/8)|Q′(zB)|. (Here recall that q ≥ 2.) Hence, we
conclude that

ρ(Q(Bm) ∩ E, Q(Bm)) ≥
(

3

5

)2

δ′.

Since ∣∣∣∣
Q′(z)

Q′(zm)
− 1

∣∣∣∣ <
1

4

on Dm, we conclude that

ρ(Bm ∩ T ◦, Bm) ≥
(

3

5

)4

δ′.
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Thus in the case that q > 1, we have the assertion with

δ =

(
3

5

)4

δ′δ1.

Now we give a proof of the main theorem.
For this purpose, take a disk B with center zB ∈ T ′ and radius |zB|−q

arbitrarily. Then we have shown in Lemma 3 that f(B) is nearly disk-shaped
(with respect to ε), and contains a disk B′ with center f(zB) ∈ S ′, whose
absolute value can be written as

|a|
q
|zB|p−q+1|(1 + ef (zB))eQ(zB)|

with |ef (zB)| < 1/2 by Lemma 4 and the condition 1 for R1, and radius

r(B′) =
3

4
|f ′(zB)||zB|−q − 1

8
>

5

8
|f ′(zB)||zB|−q

by the condition 4-(d) for R, and is contained in a disk B′′ with the same
center and radius

5

4
|f ′(zB)||zB|−q.

Note that r(B′) is greater than 2π by the condition 4-(d) for R and that the
distance between B′ and C− f(B) is greater than 1/8 by the definition.

In particular, Lemma 9 gives that

ρ(B′ ∩ T ◦, B′) ≥ δ,

which implies that

ρ(B′ ∩ T ◦, B′′) ≥ δ

4
.

Thus we conclude the following

Lemma 10 There is a positive constant δ′′ depending only on f(z) and R1

such that, for every disk B with center zB ∈ T ′ and radius |zB|−q, there exists
a packing {Bm}M

m=1 of T ′∩ f(B) with a finite number of disjoint disks Bm in
T ′′(⊂ T ′) with center zm in T ◦ and radius |zm|−q such that

ρ

(
M⋃

m=1

Bm, f(B)

)
≥ δ′′.

Moreover, for every m,

|f(zm)| ≥ |f(zB)|
2

.
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Proof. First, we cover T ◦ by open disks with center z ∈ T ◦ and radius |z|−q.
Then since the above B′ is compact, we can select a finite cover of B′ ∩ T ◦.
Then by Lemmas 7 and 8, we can find a packing {Bm}M

m=1 of T ′′ by a finite
number of disks Bm with center zm ∈ T ◦ and radius |zm|−q such that

ρ

(
M⋃

m=1

Bm, f(B)

)
≥ Cρ(B′ ∩ T ◦, B′′) ≥ 1

4
Cδ.

Here note that, since |zm|−q < 1/8 by the condition 1 for R, every such
disk Bm is contained in f(B), and hence {Bm}M

m=1 is actually a packing of
T ′′ ∩ f(B). Thus we have the first assertion with δ′′ = Cδ/4.

Next, every point z in f(B), Lemmas 3, 4 and the conditions 4-(d) for R,
1 for R1 imply that

|f(z)| > |f(zB)| − 5

4
|f ′(zB)||zB|−q >

|f(zB)|
2

,

which shows the second assertion.

Now we define a family Ek consisting of a finite number of disjoint compact
sets inductively. For every B as in Lemma 10, we denote by P(f(B)) the
packing of f(B) obtained in Lemma 10. Fix such a disk B∗ and set E0 = {B∗}.
Define

Ek = {G | G ⊂ F ∈ Ek−1, fk(G) ∈ P(fk(F ))}.
Then

E∞ =
∞⋂

k=1

( ⋃
G∈Ek

G

)

consists of escaping points whose orbit is contained in S, and Lemma 10
implies that

ρ

(( ⋃
G∈Ek,G⊂F

fk(G)

)
, fk(F )

)
≥ δ′′

for every k and F ∈ Ek−1.
Here we note the following distortion lemma.

Lemma 11 (Distortion Lemma) Let {Dj}n
j=0 be a sequence of disks with

radii `j and {fj} be a sequence of univalent functions on neighborhoods of
Dj. Assume that `j ≤ `0 < 1/5,

fj(Dj) ⊃ Dj+1, `j · |f ′j(z)| > 1
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on Dj, and
`j ·max

z∈Dj

|N(fj)(z)| < ε

for every j. Then letting

φ = φn,0 = (fn ◦ · · · ◦ f0)
−1 : D = Dn+1 → D′

0 = φ(Dn+1),

we have ∣∣∣∣
φ′(z)

φ′(zD)
− 1

∣∣∣∣ < ε

on D, and hence the distortion V (φ,D) of φ(z) is bounded by ε.

Proof. Let w0 be the center of D, and on D we set

φn,j = (fn ◦ · · · ◦ fj)
−1 (j = 0, · · · , n)

and D′
j = φn,j(D). Then since

|φ′n,j(z)| < `j · · · `n

on D, the diameter d(D′
j) of D′

j is not greater than

`j · · · `n(2`n+1) ≤ `n−j+1
0 (2`j).

On the other hand,

φ′(w)

φ′(w0)
=

n∏
j=0

(fj)
′(φn,j(w0))

(fj)′(φn,j(w))
,

and each factor on D has the following estimate:

∣∣∣∣log
(fj)

′(φn,j(w0))

(fj)′(φn,j(w))

∣∣∣∣ =

∣∣∣∣∣
∫ φn,j(w0)

φn,j(w)

f ′′j (t)

f ′j(t)
dt

∣∣∣∣∣
≤ d(D′

j) max
z∈Dj

|N(fj)(z)| < 2`n−j+1
0 ε.

Thus we have ∣∣∣∣log
φ′(w)

φ′(w0)

∣∣∣∣ <

n∑
j=0

2`n−j+1
0 ε <

2`0ε

1− `0

,

which implies the assertion as in the proof of Lemma 3, since 2`0/(1− `0) <
1/2 if `0 < 1/5.
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Lemma 12 We can find a δ∗ > 0 independent of k such that

ρ

(( ⋃
G∈Ek

G

)
∩ F, F

)
≥ δ∗,

for every F ∈ Ek−1.

Proof. Fix k and F ∈ Ek−1 arbitrarity. Then for every G0 ∈ Ek such
that G0 ⊂ F , we can find a sequence of elements Gk−j of Ej (j = 0, · · · , k)
such that Dk = B∗, and for every other j, Dj = f j(Gk−j) is a disk in
P(f j(Gk+j−1)). Let zj be the center of Dj, (and hence |zj|−q is the radius of
Dj). Then by the condition 4-(d) for R gives that

|zj|−q|f ′(z)| (> |f ′(z)|(|z|+ 1)−q) > 1

and the conditions 2 and 4-(b) for R give that

|zj|−q|N(f(z))| < 2q|zj|−1 < ε

for every z ∈ Dj.
Thus by the above distortion lemma, we conclude that

3

4
|(f−k)′(zk)| < |(f−k)′(z)| < 5

4
|(f−k)′(zk)|

on Dk = fk(G0) for every G0 ∈ Ek contained in F ∈ Ek−1. Hence we have
the assertion with δ∗ = (3/5)2δ′′.

Finally, set

dk =
2

ψk+1(6)

with ψ(x) = 1
2
exq/2. Note that ψ(x) > x and ψ′(x) > 1 on [6, +∞). And for

the diameter d(G) of every G ∈ Ek, we have the following

Lemma 13 For every G ∈ Ek,

d(G) < dk.

Proof. First, |zB∗| > R > ψ(6) by the condition 1 for R. Next since, by
Lemma 10, every point in f(B) has an absolute value greater than |f(zB)|/2
for every disk B with center zB in S ′ and radius |zB|−q, we can see inductively
that the inequality

|zfk−1(F )| > ψk(6)
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for the center zfk−1(F ) of every disk fk−1(F ) with F ∈ Ek−1 implies

|zfk(G)| >
|f(zfk−1(F ))|

2
> ψ(|zfk−1(F )|) > ψk+1(6)

by the condition 4-(d) for R, and hence

r(fk(G)) = |f(zfk(G))|−q < 1/ψk+1(6),

for every fk(G) ∈ P(fk(F )). Since clearly |(f−k)′(z)| < 1 on fk(G), we
conclude the assertion.

Summing up, we have obtained a sequence {Ek} such that every G ∈ Ek

is contained in a F ∈ Ek−1 and every G ∈ Ek contains at least one element of
Ek+1. We have also found constants dk and δ∗ such that

ρ

(( ⋃
G∈Ek

G

)
∩ F, F

)
≥ δ∗ > 0, d(G) ≤ dk,

dk → 0,
k

log(1/dk)
=→ 0,

for every k and G in Ek. Hence the Fundamental lemma in [2] (also cf. [3]
Lemma 3.2.7) shows that the Hausdorff dimension of E∞ is two.
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