
ON THE INNER RADIUS OF UNIVALENCE FOR AN ANNULUS

SHINRYO NONIN AND TOSHIYUKI SUGAWA

Abstract. For the annulus fz 2 C ; 1 < jzj < emg; 0 < m � 1; we give estimates
of the inner radius of univalence with respect to Schwarzian derivatives. The estimates
have sharp order when m tends to 0 or +1:

1. Main result

Let D be a domain in the Riemann sphere bC with at least three boundary points.
Then D inherits the hyperbolic metric �D(z)jdzj of constant negative curvature �4 from
its universal covering space D = fjzj < 1g with the metric �D (�) = 1=(1� j�j2): The Bers
space B2(D) is de�ned as the complex Banach space of holomorphic functions on D with
the hyperbolic norm

k'kD = sup
z2D

j'(z)j�D(z)
�2:

For a non-constant meromorphic function f on D; if kSfkD < +1; then f must be
locally univalent. The remarkable result due to Beardon and Gehring [1] states that
kSfkD � 12 holds for an arbitrary univalent meromorphic function f on D: Here, the
number 12 is sharp even when D is simply connected. Note that this result extends the
Kraus-Nehari theorem stating that kSfkD � 6 for a univalent function on the unit disk
D : Consider the quantity

�(D) = inffkSfkD; f is non-univalent meromorphic in Dg;

which is called the inner radius of univalence of D: In other words, �(D) is the possible
largest number � � 0 with the property that the condition kSfkD � � implies the
univalence of a meromorphic function f on D: For a simply connected domain D; it is
well known that �(D) > 0 if and only if D is a quasidisk. Note that the quantity �(D) can
be regarded as the distance from the point Sf to the boundary in the universal Teichm�uller
space. Also, explicit values of the inner radii of univalence are known for several domains
such as (round) disks, sectors, Euclidean triangles and regular polygons. Note also that
the inner radius of univalence is a M�obius invariant, namely, �(L(D)) = �(D) for any
M�obius transformation L: For these facts and more information, see [5].
On the other hand, only few things are known for multiply connected domains. Amongst

them, the following result is probably most important.

Theorem A (Osgood [6]). For a �nitely connected domain D; the inner radius of

univalence of D is positive if and only if each boundary component of D is either a

quasicircle or a singleton.
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As for explicit values or estimates of �(D); however, very little seems to be known even
when D is doubly connected, or, more concretely, when D is a circular annulus. As far
as the authors know, only one result in this direction is the following due to Kobayashi
and Wada [3].

Theorem B. Let f be a non-constant meromorphic function on a neighbourhood of the

unit circle S1 = @D : If jSf(z)j < 3=2 holds for all z 2 S1; then f is injective in S1: The
bound 3=2 is sharp.

In this note, we investigate the inner radius of univalence I(m) = �(D) of a circular
annulus D of modulus m > 0: By means of the M�obius invariance of �(D); we can de�ne
I(m) more speci�cally by

I(m) = �(Am); where Am = fz 2 C ; 1 < jzj < emg:

Here we set A1 = fz 2 C ; 1 < jzjg; and therefore, I(1) = �(A1) = �(D �); where D � is
the once punctured disk D nf0g: Our main results are collected in the following theorems.

Theorem 1.1. The function I(m) is non-decreasing in 0 < m � 1 and satis�es

1

2
(1� e�m=2)2 � I(m) � min

�
I(1);

6m2

�2

�
for 0 < m <1:

From this result, we have the following asymptotic behaviour of I(m) as m! 0 :

1

8
� lim inf

m!0+

I(m)

m2
� lim sup

m!0+

I(m)

m2
�

6

�2
:

Note that (6=�2) : (1=8) = 48=�2 � 4:8634:
One hopes that the once-punctured disk D � is easiest to compute the value of the inner

radius of univalence other than simply connected domains. We could, however, get only
the following expression for I(1) and some estimates for it.

Theorem 1.2. The value I(1) can be computed by the formula

I(1) = inf
'2@T (1)

k'kD� :(1.1)

It also satis�es the inequality

8e�2 = 1:0826 � � � � I(1) � 2:(1.2)

Here @T (1) is the boundary of the universal Teichm�uller space T (1); which is de�ned
as the set of all ' 2 B2(D ) for which there exists a univalent function on D with a

quasiconformal extension to bC such that Sf = '; where the boundary of T (1) is taken in
the Banach space B2(D ): See [5] for more details.
In particular, we have the following corollary.

Corollary 1.3 (Asymptotic behaviour).

I(m) � m2 as m! 0; and

1

2
� lim

m!+1
I(m) � 8e�2:
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Our method developed below is indirect, and hence, does not provide any concrete con-
struction of quasiconformal extensions for those functions f on Am such that kSfkAm <
I(m) = �(Am): A constructive proof would be desirable such as the Ahlfors-Weill exten-
sion. We, however, should keep in mind with the obstacle that the Schwarzian di�erential
equation Sf = ' for a given ' does not necessarily have a single-valued solution f on the
multiply connected domain (cf. x2).

2. Fundamental properties of I(m)

In this section, we deduce several fundamental properties of the function I(m); from
which our main results will follow except for the lower bound for I(m) in Theorem 1.1.
We begin by stating a few preliminary results. The �rst simple lemma will be used

frequently below. The proof is immediately done by the inequality �D � �D1
on D1 for

D1 � D (see [6]).

Lemma 2.1. For a function ' 2 B2(D) and for a subdomain D1 of D; the inequality

k'kD1
� k'kD holds.

In particular, for a non-constant meromorphic function f on the domain D; we obtain
kSfkD1

� kSfkD for any subdomain D1 of D:
The next preliminary result is elementary, but, may have its own right.

Lemma 2.2. Let A be a ring domain and C be a smooth simple closed curve in A separat-

ing two boundary components of A: Suppose that a locally univalent holomorphic function

f on A is univalent in each component of A n C: Then, f is necessarily univalent in A:

Remark. The local univalence cannot be dropped in general. For instance, consider
the function f(z) = z + 1=z in the annulus A = fz; r < jzj < 1=rg: Then, f is univalent
in each component of A n fjzj = 1g: On the other hand, f is not univalent in A because
f has branch at z = �1:

Proof. Let A0 and A00 be the two components of A n C: Then f(A0) and f(A00) are both
ring domains and have the curve f(C) as a boundary component in common. Since f is
locally univalent and orientation preserving, f(C) must be a Jordan curve and separates
f(A0) from f(A00): It is now easy to see that f is univalent in the whole A:

Proof of monotoneity of I(m). Using the above lemmas, we prove that I(m) is non-
decreasing in 0 < m � 1: First we consider in (0;1): It suÆces to show that I(m) �
I(m0) provided that m < m0 < 2m: Suppose that a non-constant meromorphic function f
on Am0 satis�es kSfkA

m0
� I(m): Set A = Am0 and C = fjzj = em

0=2g: Then, by Lemma

2.1, we get kSfkB0 � I(m) and kSfkB00 � I(m); where B0 = Am and B00 = fem
0�m < jzj <

emg: By de�nition of I(m); we observe that f is univalent in B0 and in B00: The hypotheses
in Lemma 2.2 are now ful�lled. Hence, f is univalent in Am0 : Since f was arbitrary as far
as the condition kSfkA

m0
� I(m) is satis�ed, we conclude that I(m0) = �(Am0) � I(m):

Secondly, we show the inequality I(m) � I(1) for any 0 < m < 1: Suppose that
a non-constant meromorphic function f on A1 satis�es kSfkA1 � I(m) for some �nite
m: Then we have kSfkBn � I(m); where Bn = fe(n�1)m < jzj < enmg: In particular, f
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is univalent in each Bn for n = 1; 2; : : : : By the argument in the proof of Lemma 2.2,
we see that the sequence of ring domains f(Bn) is nesting, namely, each f(Bn) separates
f(Bn�1) from f(Bn+1): Therefore, we conclude that f is univalent in A1: This means
that I(m) � I(1) for any �nite m:

The authors would like to raise the following apparently simple questions.

Problem 1. Is I(m) continuous in 0 < m � 1?
Problem 2. Is I(m) strictly increasing in 0 < m <1?

To illustrate the sharp contrast between the simply connected case and the multiply
connected case, we give the following observation here. If D is simply connected, then
the Schwarzian di�erential equation Sf = ' for a given holomorphic ' on D has always a
(single-valued) meromorphic solution in D: The same thing, however, no longer holds for
a multiply connected domain. In fact, let '(z) = z�2=2: It is clear that ' 2 B2(Am) for
all m 2 (0;1): For complex parameter c; we see that the equation Sf = c' has a single-
valued meromorphic solution f in Am if and only if c is written in the form c = (1�n2) for
some non-zero integer n: This is explained by the fact that the function f�(z) = (z��1)=�
de�ned in a neighbourhood of z = 1 satis�es Sf� = (1� �2)' and that f� is analytically
continued to a single-valued function in Am if and only if � is a non-zero integer. In
particular, the equation Sf = c' has no univalent (single-valued) solution in Am unless
c = 0:
Therefore, even if the norm of ' in B2(D) is very small, there does not necessarily exist

a single-valued meromorphic function f satisfying Sf = ' in the case when D is multiply
connected.

Let us proceed to the investigation of the value of I(1): We need �rst the following
elementary lemma.

Lemma 2.3. The function q(x) = �D (x)=�D� (x) is increasing in 0 < x < 1 and satis�es

q(0+) = 0 and q(1�) = 1:

Proof. The function q is explicitly given by q(x) = 2x log(1=x)=(1�x2): By di�erentiation,
we have

1� x2

2
q0(x) =

1 + x2

1� x2
log

1

x
� 1:

Thus, q0(x) > 0 if and only if Q(x) := log(1=x)� (1� x2)=(1 + x2) > 0: We now compute

Q0(x) = �
(1� x2)2

x(1 + x2)2
< 0:

Hence, Q(x) > Q(1) = 0: The boundary behaviour of q is obvious.

Next, in order to prove Theorem 1.2, we need the following result concerning the Bers
spaces.

Lemma 2.4. The closed subspace B0
2(D

�) = f' 2 B2(D
�); lim supz!0 j'(z)j < 1g of

B2(D
�) is canonically isomorphic to B2(D ): More precisely, the restriction map B2(D ) !
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B0
2(D

�) is bijective and the inequalities�
2

e

�2

k'kD � k'kD� � k'kD(2.1)

hold for every ' 2 B2(D ): Equality holds in the left-hand side if and only if ' is a constant.

In particular, the constant (2=e)2 = 0:5413 : : : is best possible.

Proof. The restriction map B2(D ) ! B0
2(D

�) is a contraction, namely, k'kD� � k'kD
for ' 2 B2(D ) by Lemma 2.1. On the other hand, since every ' 2 B0

2(D
�) extends

holomorphically to the origin, the surjectivity of the restriction map follows immediately.
The Banach open mapping theorem now ensures the existence of a constant C > 0 for
which Ck'kD � k'kD 0 holds. We, however, deduce the latter part directly.
Fix t in 0 < t < 1: Take an arbitrary ' 2 B2(D ) with k'kD� = 1: For jzj = t; we have

the estimate j'(z)j � �D� (t)
2: By the maximum modulus principle, the last inequality is

still valid for jzj � t: Therefore, we obtain (1 � jzj2)2j'(z)j � �D� (t)
2 for jzj � t: On the

other hand, for jzj > t; we have (1� jzj2)2j'(z)j � q(jzj)�2 � q(t)�2 = (1� t2)�D� (t)
2 by

Lemma 2.3. In summary, we get the inequality sup(1� jzj2)2j'(z)j � �D� (t)
2 for a �xed

t: As is easily seen, the minimum of the density �D� (t) is attained at t = 1=e and its value
is e=2: We now choose t = 1=e to obtain k'kD � e2=4: In this way, we have shown the
desired inequality.
The case when equality holds is easily analyzed by the above proof.

Note that B0
2(D

�) is a subspace of B2(D
�) of codimension one. In fact, it is easy to show

that B2(D
�) = B0

2(D
�) � hz�1i (see the proof of the following lemma). The next lemma

tells us that the factor 1=z does nothing with the Schwarzian derivative of single-valued
functions.

Lemma 2.5. Let f be a meromorphic function on D � satisfying kSfkD� < 1: Then f
meromorphically extends to D and satis�es kSfkD <1:

Proof. Set ' = Sf : Since j'(z)j � k'kD� (2jzj log(1=jzj))
�2 holds for z 2 D � ; the function

z'(z) has removable singularity at the origin. Hence, ' has an expression in the form
'(z) = c=z + '0(z); where c is a constant and '0 2 B0

2(D
�): It is well known that the

function f can be expressed, at least locally, by the ratio of two linearly independent
solutions of the di�erential equation

2y00 +
� c
z
+ '0(z)

�
y = 0(2.2)

in the domain D � : We now use the general theory of the second order linear ODE. See, for
instance, [2, Chap. 5.2] as a good source of knowledge. Since z = 0 is a regular singular
point of the di�erential equation, a solution to (2.2) around the origin can be given by
the power series y = z�

P1
n=0 anz

n with positive radius of convergence, where a0 6= 0:
Substituting this form to (2.2), we get the equations

�(�� 1) = 0 and(2.3)

2(�+ 1)�a1 + ca0 = 0:(2.4)
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Now we assume that c 6= 0: From (2.3), � is either 0 or 1: If � = 0; then (2.4) enforces
c = 0: Thus, � must be 1: We denote by y1 the solution y given in the above form with
� = 1 and a0 = 1: Note that y1 is a single-valued holomorphic solution to (2.2) around
the origin. Then, by the change of unknown functions given by y = y1�; it turns out that
non-constant � should satisfy �0 = by�21 for some constant b 6= 0: We may assume that
b = 1: Since a1 = �c=4 by (2.4), we observe

�0 =
1

y21
=

1

z2

�
1�

c

4
z + : : :

��2
=

1

z2
+

c

2z
+ : : : :

In particular, � is never single-valued unless c = 0: Since the single-valued function f is
locally written as L Æ � for some M�obius transformation L; c must be 0: Hence, ' = '0 2
B0
2(D

�): The last assertion follows from Lemma 2.4.

The condition c = 0 certainly corresponds to the special case of Theorem 4.1 in [4]
when m = 1 in their notation though this case was excluded. Actually, the assertion in
the above lemma follows also from their proof of that theorem. We, however, decided to
include the proof here because the involved calculation is much simper than in the general
case considered in [4].

Proof of (1.1). We are now in a position to give a proof for (1.1) in Theorem 1.2. We
recall that I(1) = �(D �) is the in�mum of kSfkD� over all non-univalent meromorphic
functions f on D

� with kSfkD� <1: By Lemma 2.5, the range of f is same as the set of
non-univalent meromorphic functions on D with �nite Schwarzian norm. Fix any non-zero
element ' 2 B2(D ): Let ft be a meromorphic function in D determined by Sft = t' and by
the normalization ft(0) = f 0t(0)�1 = f 00t (0) = 0: It is well known that ft(z) is holomorphic

both in t and z as map with values taken in the Riemann sphere bC : Consider the sets
U = ft 2 C ; t' 2 @T (1)g and V = ft 2 C ; ft non-univalent in D g: Put r0 = inffjtj; t 2 Ug
and r1 = inffjtj; t 2 V g: It is enough to show that r0 = r1: Since t' 2 T (1) whenever
jtj < r0; it is clear that r0 � r1: On the other hand, ft is univalent whenever jtj < r1
and f0 = id: This implies that ft is a holomorphic motion of D over jtj < r1: Therefore,
t' 2 T (1) for jtj < r1: (This is a special case of a theorem of I. V. Zhuravlev, which
was originally proved by using Grunsky's inequality. See [8] for more details.) We now
conclude that r1 � r0; and hence, r0 = r1:

Proof of (1.2). We next prove (1.2) in Theorem 1.2. The Kraus-Nehari theorem and
the Ahlfors-Weill theorem implies that 2 � k'k � 6 for every ' 2 T (1) and the constants
2 and 6 are sharp (see [5]). Hence, the inequality I(1) � 2 follows from (1.1). On the
other hand, we obtain the reverse inequality I(1) � 8e�2: Indeed, for ' 2 @T (1); we
have k'kD� � (2=e)2k'kD � 2(2=e)2 by (2.1).

The authors have tried to �nd a non-univalent function on D such that kSfkD� < 2; but
have not ever succeeded. We would like to add one more comment. If ' 2 B2(D ) satis�es
the condition

k'kD = lim sup
jzj!1

(1� jzj2)2j'(z)j;
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then k'kD� = k'kD necessarily holds because of the fact q(1�) = 1 in Lemma 2.3. There-
fore, if we could have a non-univalent function with kSfkD� < 2; then the supremum of
(1� jzj2)2jSf(z)j over z 2 D must be attained in the interior of D :

Proof of I(m) � 6m2=�2. We end this section with the proof of the right-side inequality
in Theorem 1.1. The inequality I(m) � I(1) has been done above. The remaining part
is the inequality I(m) � 6m2=�2: We recall the explicit formula for �Am (see, for instance,
[1]):

1

�Am(z)
=

2mjzj

�
sin

�
�
log jzj

m

�
:(2.5)

We consider the non-univalent function f(z) = z2 on Am: Then f has the Schwarzian
derivative Sf(z) = �3=2z2: (The sharpness in Theorem B is due to this function.) Using
(2.5), we compute

kSfkAm = sup
1<x<em

6m2

�2
sin2

�
�
logx

m

�
=

6m2

�2
:

3. Lower estimate

In this section, we give a proof for the left-side inequality in Theorem 1.1. By Lemma
2.1, our problem reduces to the case of simply connected domain. Note that this step is
similar to the argument of Osgood developed in [6]. Indeed, let Bm be the upper half of
Am; namely, Bm = fz 2 Am; Im z > 0g: Then we have the following.

Lemma 3.1. The inequality �(Am) � �(Bm) holds.

Proof. Let f be a non-constant meromorphic function on Am satisfying kSfkAm < �(Bm):
Suppose that f is not univalent in Am: Then, there are points z1 and z2 in Am with z1 6= z2
such that f(z1) = f(z2): By using a suitable rotation, we may assume that both z1 and
z2 belong to Bm: Since kSfkBm � kSfkAm < �(Bm) by Lemma 2.1, the restriction of

f to Bm admits a quasiconformal extension to bC (see [5, III.5.3]). This is impossible
because f(z1) = f(z2); and thus, f must be univalent in Bm: We now conclude that
�(Am) � �(Bm):

By virtue of Ahlfors' characterization of quasicircles, the domain Bm is a K-quasidisk
for some K = K(m): Therefore, we would have an estimate of the type �(Bm) � c(K);
where c(K) is a positive constant depending only on K: However, we have no precise
information about K = K(m) and c(K): To get rid of such diÆculty, we will construct a
quasiconformal reection in @Bm: The following is the key result for our proof.

Theorem C (Ahlfors-Lehto univalence criterion [7]). Let D be a quasidisk with quasi-

conformal reection � in @D: Then, the following estimate is obtained:

�(D) � "(�;D) := 2 ess: inf
z2D

j�@�(z)j � j@�(z)j

j�(z)� zj2�D(z)2
:
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We remark that the quantity "(�;D) is invariant under the M�obius conjugation, in
other words, "(L Æ � Æ L�1; L(D)) = "(�;D) for a M�obius transformation L:
In order to make the symmetry ofBm clear, we transformBm by the M�obius map L(z) =

(z� iem=2)=(z+ iem=2): Then the resulting domain can be described by D = D n(C+[C�);
where C+ = fz 2 C ; jz � coth(m=2)j � 1= sinh(m=2)g and C� = fz;�z 2 C+g: Note that
the circle @C+ intersects the unit circle @D perpendicularly at the points ei� and e�i�;
where � is the number between 0 and �=2 determined by cos� = tanh(m=2); equivalently,
tan(�=2) = e�m=2:
In order to construct a quasiconformal reection in @D; we divide D into three parts

D0; D+; D� by setting D0 = Dn(W+[W�); D+ = D\W+ = W+nC+; and D� = fz;�z 2
D+g = D\W� =W�nC�; whereW+ = fz; j2z�cos�j < cos�g andW� = fz;�z 2 W+g:
Note also that the circle @W+ intersects @D at the same points ei� and e�i� as above. We
construct the quasiconformal reection � in @D in such a way that � is compatible with
the reection j(z) = ��z in the imaginary axis, namely, � Æ j = j Æ �: Roughly speaking,
our reection will be the usual reection in the unit circle in D0 and the usual reection in
the circle @C� followed by the angle-stretching map of expansion K = (3��2�)=(��2�)
in D�:
To give a precise de�nition, we introduce the auxiliary transformationM(z) = i(ei�z�

1)=(z � ei�): A simple calculation shows that D0 = M(D); D0
0 = M(D0); D

0
+ = M(D+)

and D0
� = M(D�) are expressed by

D0 = fz 2 C ; Im z > 0;Re z > 0; jz � i cothmj > 1= sinhmg;

D0
0 = fz 2 C nW 0

�; �=2� � < arg z < �=2g;

D0
+ = fz 2 C ; 0 < arg z < �=2� �g; and

D0
� = fz 2 W 0

�; jz � i tanhmj < 1= sinhmg:

Here W 0
� = M(W�) is the interior of the circle which passes through three points

M(�ei�) = i cos�; M(�e�i�) = i= cos� and M(0) = ei(�=2��); namely,

W 0
� =

�
z 2 C ;

����z � 1

2 cosh(m=2)
� i cothm

���� < 1

2 sinh(m=2)

�
:

De�ne the map � 0 : D0
+ ! fz 2 C ;�3�=2 + � < arg z < 0g by � 0(z) = jzj(�z=jzj)K; in

other words, � 0(rei�) = re�iK�; where K = (3�� 2�)=(�� 2�) and set � =M�1 Æ � 0 ÆM:
We are now in a position to give the de�nition of our quasiconformal reection �: Set

�(z) =

8><
>:
1=�z for z 2 D0;

�(z) for z 2 D+;

(j Æ � Æ j)(z) for z 2 D�:

We also set �0 = M Æ � ÆM�1 on D0: By de�nition, the map �0 is nothing but the
reection j(z) = ��z on D0

0: Noting j(z) = � 0(z) on the ray arg z = �=2 � �; we see
that �0 is continuous in D0; and hence, it is a (sense-reversing) homeomorphism from D0

onto bC n D0: Since the angle-stretching map of expansion K > 1 is K-quasiconformal,
�0 is, moreover, an anti-quasiconformal homeomorphism. Thus, � maps the domain D

anti-quasiconformally onto its exterior bC n D in such a way that � keeps the boundary

�xed pointwise. De�ning as ��1 on bC n D; we get the desired quasiconformal reection
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� : bC ! bC in @D: At this point, we can single out the following as a consequence of the
above construction.

Proposition 3.2. The quasidisk Bm = fz; 1 < jzj < em; Im z > 0g admits a K-quasicon-

formal reection in its boundary, whereK = (3��2�)=(��2�) and � = arccos tanh(m=2):

Let us calculate the quantity "(�;D): By the symmetric property � Æ j = j Æ �; it is
enough for us to take the in�mum only over z 2 D0 [ D+: Furthermore, by the M�obius
invariance of the quantity (j�@�j � j@�j)=j�(z)� zj2�D(z)

2 (see [5]), we have

"(�;D) = 2 ess: inf
z2D0

0
[D0

+

j�@�0(z)j � j@�0(z)j

j�0(z)� zj2�D0(z)2
:

Regarding � 0 as the function �z(1+K)=2z(1�K)=2; we compute

�@� 0(z) =
(1 +K)

2

� �z
z

�(K�1)=2
and @� 0(z) =

(1�K)

2

� �z
z

�(K+1)=2

:

In particular, we have j�@�0j � j@�0j = 1 in D0
+: The last identity holds also in the interior

of D0
0: Hence, we obtain

"(�;D) =
2

Q2
; where Q = sup

z2D0

0
[D0

+

j�0(z)� zj�D0(z):(3.1)

Although we can give a conformal map of the domain D0 (equivalently, of Bm) in terms
of Jacobi's elliptic functions in an explicit way, it seems diÆcult to compute the quantity
�D0 directly. Therefore, we will estimate �D0 by using several available techniques and
then obtain a consequence on Q: Set M(z) = j�0(z)� zj�D0(z): We divide the estimation
into several parts.

Case 1. z 2 D0
0; In this case, as we noted, �

0(z) = ��z:We recall the well-known inequality
�D0(z) � 1=Æ(z); where Æ(z) = dist(z; @D0) denotes the Euclidean distance from z to the
boundary of D0: Therefore, we obtain the estimate

Q(z) �
2x

Æ(z)
; z = x + iy:

We now estimate Æ(z) from below. Let a be a point in @D0 satisfying Æ(z) = jz � aj: We
now further divide this case into three subcases according to the place of a:
Case 1a. Re a = 0 ; Then clearly Æ(z) = x; and hence, Q(z) � 2:
Case 1b. Im a = 0 ; Then Æ(z) = y: Since y � x tan(�=2 � �) = x= tan�; we obtain
Q(z) � 2x=y � 2 tan� = 2= sinh(m=2):
Case 1c. ja� i cothmj = 1= sinhm ; Then Æ(z) = jz� i cothmj�1= sinhm: Now consider
the set U = fw 2 C ; jw � i cothmj � 1= sinhm < cRewg for a constant 0 < c < 1: We
recognize that U is the ellipse expressed by

(1� c2)

�
u�

c

(1� c2) sinhm

�2

+ (v � cothm)2 <
1

(1� c2) sinh2m
; w = u+ iv:

Since the major axis of the ellipse U is the line segment fu+ i cothm;�1=(1+c) sinhm <
u < 1=(1� c) sinhmg; it is contained in the disk W 0

� when

1

(1� c) sinhm
�

1

2

�
1

sinh(m=2)
+

1

cosh(m=2)

�
:
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The last condition is equivalent to c � 1 � e�m=2: Since z lies in the outside of W 0
�; we

conclude that Æ(z) = jz � i cothmj � 1= sinhm � (1 � e�m=2)x; and therefore, Q(z) �
2=(1� e�m=2):
Because 2 < 2= sinh(m=2) < 2=(1 � e�m=2) holds for m > 0; we �nally obtain the

estimate Q(z) � 2=(1� e�m=2) in Case 1.

Case 2. z 2 D0
+ ; In this case, the expression z = rei� in polar coordinates is more

convenient. Note that 0 < � < �=2��: For later convenience, we set  = �=2��: Recall
that cos  = sin� = 1= cosh(m=2): Since �0(z) = r�iK�; where K = (3�� 2�)=(�� 2�) =
(� + )=; it follows that j�0(z)� zj = rje�iK� � ei�j = 2r sin((K + 1)�=2):
Let � 2 (0; �=2) be the angle satisfying cos � = 1= coshm: Then, the sector 
 = fw; 0 <

argw < �g is contained in D0: Also, z 2 
 because cos � < cos  < cos �: Since by the
transformation w 7! w�=� the sector 
 is mapped onto the upper half-plane, we compute

�
(z) =
�

2�

jzj�=��1

Im (z�=�)
=

�

2�r sin(��=�)
:

By the inequality �D0(z) < �
(z); we obtain the estimate

Q(z) <
�

�

sin(K+1
2
�)

sin(�
�
�)

:(3.2)

The next lemma ensures the inequality �=� < (K + 1)=2 = �=2 + 1:

Lemma 3.3. The inequality

�

arccos(1= coshm)
<

�

2 arccos(1= cosh(m=2))
+ 1

holds for each number 0 < m <1:

Proof. Let �;  2 (0; �=2) be the numbers determined by cos � = 1= coshm and cos  =
1= cosh(m=2) as above. Then cos(2) = 2 cos2  � 1 = 4=(1 + coshm) � 1 = 4=(1 +
1= cos�) � 1 = (3 cos � � 1)=(cos� � 1): Since the required inequality is equivalent to
2 < ��=(� � �); it is enough to show that the function

F (x) =
3 cos x� 1

cos x+ 1
� cos

�
�x

� � x

�
is positive in 0 < x < �=2: A simple computation yields that sin(�x=(� � x)) � sinx for
0 < x � 3�=8: Therefore,

F 0(x) =
�2

(� � x)2
sin

�
�x

� � x

�
�

4 sinx

(1 + cos x)2

�

�
�

� � x
+

2

1 + cos x

��
�

� � x
�

2

1 + cos x

�
sinx

holds in 0 < x � 3�=8: Since the concavity of the function 1+cos x implies the inequality
1 + cos x > 2� 2x=� in 0 < x < �=2; the positivity of F 0(x) follows in 0 < x < 3�=8: In
particular, F (x) > F (0) = 0 holds for 0 < x � 3�=8:
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We now concentrate on the case when 3�=8 < x < �=2: Since the function �x=(� � x)
is convex, the inequality � > �x=(��x) > 4x�� can be obtained in this interval. Hence,

F (x) >
3 cosx� 1

cos x + 1
� cos(4x� �) =

3 cosx� 1

cos x + 1
+ cos(4x):

Setting G(x) = 2(1+ cos x)F (x) = 6 cosx� 2+2 cos(4x)+ cos(3x)+ cos(5x); we see that

G00(x) = �6 cos x� 32 cos(4x)� 9 cos(3x)� 25 cos(5x)

= �6 cos x� 32 cos(4x)� 16 cos(5x)� 18 cos(4x) cos x < 0

in 3�=8 < x < �=2: The last inequality means that G is concave, and hence, G(x) >
minfG(3�=8); G(�=2)g = 0 in 3�=8 < x < �=2: Therefore, we obtain the positivity of
F (x) in this case, too.

We need one more elementary lemma.

Lemma 3.4. Let 0 < L < M: Then the function sin(M�)= sin(L�) is decreasing in 0 <
� < �=2M: In particular, sin(M�)= sin(L�) < M=L holds there.

Proof. Set f(�) = sin(M�)= sin(L�): Then,

sin2(L�)f 0(�) = M cos(M�) sin(L�)� L sin(M�) cos(L�)

= �LM(M2 � L2)
�2

2
+O(j�j3); � ! 0:

In particular, f 0(�) < 0 when � > 0 is suÆciently small. On the other hand, f 0(�) = 0
if and only if g(M�) = g(L�); where g(t) = (tan t)=t: Since g(t) is (strictly) increasing in
0 < t < �=2; it follows that f 0(�) 6= 0 for 0 < � < �=2M: Thus, f 0(�) < 0 throughout
0 < � < �=2M; which means that f(�) is decreasing.

The above lemma can now be applied to (3.2) to get the upper estimate Q(z) �
(K + 1)=2 = 2(� � �)=(� � 2�) in Case 2.
Summarizing the above observations, we come to the estimate

Q � max

�
2

1� e�m=2
;
2(� � �)

� � 2�

�
:

Finally, we show the inequality

2(� � �)

� � 2�
<

2

1� e�m=2
:(3.3)

Once we obtain this, we have the inequality "(�;D) = 2=Q2 � (1� e�m=2)2=2 by recalling
(3.1). Theorem C then produces the desired estimate �(Am) � (1� e�m=2)2=2:
Inequality (3.3) is equivalent to � < �=(1 + em=2): Since sin� = 1= cosh(m=2); the last

inequality is further equivalent to sin(�=(1 + em=2)) > 1= cosh(m=2) = 2=(em=2 + e�m=2):
If we set x = 1=(1 + em=2) 2 (0; 1=2); we can write the last inequality as

sin(�x) >
2x(1� x)

1� 2x+ 2x2
;
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or equivalently,

F (x) :=
4x(1� x)

sin(�x)
< 1 + 4

�
x�

1

2

�2

:(3.4)

It is known (and actually easily veri�ed) that F is convex and 1 � F (x) < 4=� holds in
0 < x < 1: This information, however, is not suÆcient to show (3.4). We show now that
F 00(x) < 8: Then F 0(x) = F 0(x)�F 0(1=2) < 8(x� 1=2) and F (x)�F (1=2) < 4(x� 1=2)2

will follow for x 2 (0; 1=2): The �nal inequality is nothing but (3.4).
A direct calculation gives us

F 00(x) = �
8 sin2(�x) + 8�(1� 2x) sin(�x) cos(�x) + 4�2x(1� x)(sin2(�x)� 2)

sin3(�x)
:

Therefore, the inequality F 00(x) < 8 is equivalent to the positivity of the function

G(x) = 2 sin3(�x) + 2 sin2(�x) + 2�(1� 2x) sin(�x) cos(�x) + �2x(1� x)(sin2(�x)� 2):

Using the inequality cos(�x) � 1� 2x for 0 < x < 1=2; we estimate

G0(x) = � sin(�x)
h�
2�2x(1� x) + 6 sin(�x)

	
cos(�x)� 3(1� 2x)� sin(�x)

i
� � sin(�x)

h�
2�2x(1� x) + 6 sin(�x)

	
(1� 2x)� 3(1� 2x)� sin(�x)

i
= 3�(� � 2)(1� 2x) sin(�x)

�
2�2

3(� � 2)
x(1� x)� sin(�x):

�
Since 2�2=3(� � 2) = 5:76 � � � > 4; we conclude that G0(x) > 0 for 0 < x < 1=2 from
the inequality F (x) > 1: Hence, G is increasing and, in particular, G(x) > G(0) = 0 in
0 < x < 1=2: Now we have shown all we needed.
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