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We show a monotonicity property of the hyperbolic metric of a punctured rectangular torus.

We will then deduce a lower estimate of the hyperbolic metric of the domain C n f0; 1g: We

also determine the value of hyperbolic sup-norm of standard quadratic di�erentials on the once-

punctured square torus or the symmetric four-times punctured sphere. This enables us to

compute numerically the inner and outer radii of the Bers embedding of the corresponding

Teichm�uller space under the hypothesis of some conjectural properties of it.

1. Main results

Let �D(z)jdzj denote the hyperbolic metric for a plane domainD � bC which has at least
three boundary points, or, more generally, for a hyperbolic Riemann surface D: In other
words, �D(f(�))jf 0(�)j = 1=(1� j�j2) for an arbitrary holomorphic universal cover f of D
from the unit disk D = f� 2 C ; j�j < 1g: This quantity has been known to be quite an
important conformal invariant in the theory of Complex Analysis. In various places such
as Schottky's theorem, Landau's theorem and their re�nements, we encounter the need to
know about the magnitude of �D: Here is a convenient upper estimate: �D(z) � 1=ÆD(z)
in the case D � C ; where ÆD(z) stands for the Euclidean distance from z 2 D to the
boundary @D: On the other hand, simple lower estimates of �D are less known for general
plane domains D: In this direction, the reader can �nd several results in [3].
When we try to obtain a general lower estimate of �D; the most important thing is

probably the estimation of that for the special domain D0 = bC n f0; 1;1g because the
principle of hyperbolic metric due to R. Nevanlinna [12, p. 50] yields �D � �D0

when
D � D0:We will denote by �(z) the hyperbolic density �D0

(z) of this domain throughout
this article. Note that the symmetry of the domain D0 leads to the useful identities

�(�z) = �(z); �(1� z) = �(z); and �(1=z)=jzj2 = �(z):(1.1)
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An explicit representation of � was given by Agard [2] in terms of the complete elliptic
integrals of the �rst kind. An iterative algorithm computing the value of �(z) together
with several interesting properties of it is given by Solynin and Vuorinen [16], where the
de�nition of � is slightly di�erent from ours. Nevertheless it is still diÆcult to derive a
useful estimate for �(z) from those results.
The following inequality was proved by Hempel [4] and Jenkins [5] independently:

�(z) � 1

2jzj(j log jzjj+ C1)
;(1.2)

where C1 = 1=2�(�1) = �(1=4)4=4�2 � 4:37688; �(x) is the usual Gamma function
and equality holds above when z = �1: This lower bound has actually the best possible
asymptotic behaviour. Indeed, the inclusion D

� = D n f0g � D0 leads to the inequality
�(z) � �D� (z) = 1=2jzj log(1=jzj) for 0 < jzj < 1 (see [12, p. 246]), which together with
(1.2) implies that �(z) = (1 + o(1))=2jzj log(1=jzj) as z ! 0: Our inequality below is,
however, still better than the above except for neighbourhoods of the punctures, where
the growth order of our bound is apparently smaller than the above.

Theorem 1. For the hyperbolic metric �(z)jdzj of D0; the lower estimate

�(z) � C2jzj�3=4jz � 1j�1=2

can be obtained and equality holds precisely when z = �1: Here, C2 =
p
2�(�1) =

2
p
2�2=�(1=4)4 � 0:161555:

Remark 1. Setting m1(z) = 1=2jzj(j log jzjj + C1) and m2(z) = C2jzj�3=4jz � 1j�1=2; we
also have the estimate �(z) � mj(1� z) for j = 1; 2: It is quite elementary to show that
mj(z) � mj(1 � z) if and only if Re z � 1=2: By the property mj(1=z) = mj(z)=jzj2;
we note the relation m2(1=z)=m1(1=z) = m2(z)=m1(z): A numerical experiment suggests
that m2(z) � m1(z) if 1=r0 � jzj � r0; where r0 = 48:We have checked also by numerical
experiments that maxf�(z)=m2(z); 1=r0 � jzj � r0;Re z � 1=2g = �(1=r0)=m2(1=r0) �
1:2281; while maxf�(z)=m1(z); 1=r0 � jzj � r0;Re z � 1=2g = �(1=2)=m1(1=2) = 2 +
8�2�(1=4)�4 log 2 � 2:3167:

As an immediate corollary of the above theorem, we have the next theorem of Landau
type.

Corollary 2. Let f(z) = a0+a1z+ z2z
2+ � � � be a holomorphic function on the unit disk

which omits the values 0 and 1: Then the inequality

ja1j � C3ja0j3=4ja0 � 1j1=2
follows, where equality holds precisely when f is a universal covering of D0 and a0 = �1:
Here, C3 = �(1=4)4=2

p
2�2 � 6:1894:

Our main inequality comes from a monotonicity property of the hyperbolic density for a
symmetric subdomain of a rectangular torus with respect to a horizontal or a vertical lines.
This property is, as we shall see in the next section, a direct consequence of Weitsman's
theorem on circularly symmetric domains.
A (marked) rectangular torus T is the complex torus given by T = C =Z[ai] for a positive

number a > 0; where Z[ai] is the lattice group generated by 1 and ai over Z; which will
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be regarded also as the subset fm+ nai;m;n 2 Zg of C : We will denote by [z] the image
of z 2 C under the canonical projection p : C ! T = C =Z[ai]:
Note that a proper subdomain of T is always hyperbolic whereas T itself is not hyper-

bolic. For a proper subdomain D of T; we denote by eD the inverse image of D under the
projection p : C ! T: Since the hyperbolic density �

eD(z) is invariant under translations of
the lattice, we can regard it as a function on D and we will denote it by �D([z]); namely,
�D([z]) = �

eD(z):
We o�er a result on the property of symmetric subdomains of a rectangular torus. Here

we will say that a subdomain D of T is (horizontally) symmetric if, for any x 2 R; the set
ft 2 [�a=2; a=2]; [x+ ti] 2 Dg is an open interval of the form (�Æ; Æ) for some 0 � Æ � a=2
or the whole interval [�a=2; a=2]:
Theorem 3. Let D be a horizontally symmetric proper subdomain of the rectangular
torus T = C =Z[ai] with a > 0: Then, for a �xed x 2 R; the hyperbolic density �D([z]) =
�D([x+ yi]) is strictly increasing in 0 < y < a=2 and strictly decreasing in �a=2 < y < 0
as long as [x+yi] 2 D: In particular, �D([x+yi]) � �D([x]) for x 2 R and y 2 [�a=2; a=2]
with [x+ yi] 2 D:
As a special case, we can extract the following corollary from the above.

Corollary 4. The hyperbolic density �X([z]) of the once-punctured rectangular torus X =
(C n L)=L; where L = Z[ai] for some a > 0; attains its minimum at the unique point
[(1 + ai)=2]:

This knowledge leads to a result on the hyperbolic sup-norm of quadratic di�erentials
on X: In general, for a holomorphic quadratic di�erential ' = '(z)dz2 on a hyperbolic
Riemann surface R; we de�ne the hyperbolic sup-norm of it by

k'kR = sup
z2R

�R(z)
�2j'(z)j:

Note that the quantity ��2
R j'j is a function on R; namely, it does not depend on the

choice of a local coordinate. Holomorphic quadratic di�erentials on R of �nite norm form
a complex Banach space, which will be denoted by B2(R): This is known to be important
as the ambient space of the Teichm�uller space of R (see Section 3).
We consider the standard quadratic di�erential '0 = dz2 on the once-punctured rect-

angular torus X = (C n L)=L; L = Z[ai]; where z denotes standard local coordinates
of X provided by local inverses of the projection p : C n L ! X: By the de�nition and
Corollary 4, we have

k'0kX = sup
[z]2X

�X([z])
�2 = sup

z2 eX

�
eX(z)

�2 = �X([(1 + ai)=2])�2:

In the case a = 1; the explicit expression of �X0
([(1 + i)=2]) can be given, where

X0 = (C n Z[i])=Z[i]:

�X0
([(1 + i)=2]) =

2�3=2

�(1=4)2
� 0:84721:(1.3)

The proof of this will be given in Section 2. We remark here that other than this special
case it seems to be quite diÆcult to calculate the value of �X([(1 + ai)=2]) even in a
numerical way.
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As an immediate consequence, we have

Theorem 5. The standard quadratic di�erential '0 = dz2 on the once-punctured square
torus X0 = (C n L)=L; L = Z[i]; has the norm

k'0kX0
= �X0

([(1 + i)=2])�2 =
�(1=4)4

4�3
� 1:3932:

It is easy to see B2(D0) = 0: Thus, a four-times punctured sphere is one extreme

among the domains Y with nontrivial B2(Y ): Actually, when Y = bC n f0; 1;1; bg with
b 6= 0; 1;1; B2(Y ) is the vector space spanned by the standard quadratic di�erential

'(z) = 1=z(z � 1)(z � b) over C : In the case Y0 = bC n f0; 1;1; 1=2g; using the classical
fact that Y0 and X0 = (C nZ[i])=Z[i] are commensurable with respect to covering, we can
deduce the following result from Theorem 5.

Theorem 6. For the domain Y0 = bC n f0; 1;1; 1=2g;




1

z(z � 1)(z � 1=2)






Y0

=
�(1=4)8

16�4
� 19:157071;

where the supremum in the de�nition of the norm is attained by z = (1� i)=2:

The last two results have applications to Teichm�uller spaces, which will be given in
Section 3 and will be based on some interesting conjectures on the Teichm�uller spaces of
the once-punctured square torus. Section 2 is devoted to the proof of Theorem 3, from
which we can deduce the other theorems.
The author would like to thank A. Yu. Solynin and M. Vuorinen for their helpful

comments. He is also grateful to H. Miyachi for a useful remark.

2. Proof of main results

We begin with showing Theorem 3. Let D be a symmetric subdomain of T as in the
statement and let U be a connected component of eD = p�1(D): Consider the covering
map f : C ! C � = C n f0g de�ned by f(z) = exp(2�z=a) and set V = f(U): Then the
restriction f : U ! V becomes a covering, too. Hence, we have

�D([z]) = �U(z) = �V (f(z))jf 0(z)j = 2�jwj
a

�V (w);

where w = f(z): Note that, by assumption, the domain V is circularly symmetric, pre-
cisely speaking, for each positive number r the set f� 2 [��; �]; rei� 2 V g is an open
interval of the form (��; �) for some 0 � � � � or the whole interval [��; �]: We now
apply the following theorem, which was �rst proved by A. Weitsman [17] up to strictness.
The strictness was complemented by A. Yu. Solynin [15] (see also [16]).

Theorem A. For a circularly symmetric hyperbolic domain V in bC ; the hyperbolic density
�V (re

i�) of V is strictly increasing in 0 � � � � as long as rei� 2 V for a �xed r > 0
except for the cases when V = fjzj < cg; V = fjzj > dg and V = fc < jzj < dg; where
0 � c < d � +1: In the exceptional cases, the hyperbolic density is constant in �:

Since jwj = jf(z)j is constant along the vertical line Re z =const., we immediately
obtain the expected conclusion.

4



Next, we prove the rests of our theorems. The argument will be based on the known
commensurability of X0 and Y0 (see, for a detailed exposition, [7]). We consider the four-
times punctured square torus Z0 = T0 n f[0]; [1=2]; [i=2]; [(1 + i)=2]g; where T0 = C =Z[i]:
Then the mapping f : [z] 7! [2z] is an unbranched 4-sheeted cover of X0 from Z0: On the
other hand, the mapping g : [z] 7! (}(z) � }(i=2))=(}(1=2) � }(i=2)) is an unbranched
2-sheeted cover of Y0 from Z0; where }(z) is the Weierstrass }-function with period lattice
L = Z[i]: Therefore, we have the relation f ��X0

= �Z0
= g��Y0 :

Now we use the standard notation e1 = }(1=2); e2 = }(i=2) and e3 = }((1 + i)=2):
Then the mapping g can be described by g Æ p = A Æ }; where A(z) = (z � e2)=(e1 � e2):
Note that e1 + e2 = 0; e3 = 0 and thus A(e3) = 1=2: As for the value of e1; we know the
following result (see, for example, [1, p. 658]):

e1 = }(1=2) =
�(1=4)4

8�
� 6:87519:(2.1)

Writing  0 = dz2=z(z�1)(z�1=2); we have A� 0 =  0(A(z))A
0(z)2 = (e1�e2)dz2=(z�

e1)(z�e2)(z�e3): Noting the fundamental relation (}0)2 = 4(}�e1)(}�e2)(}�e3); we get
(g Æp)� 0 = (AÆ})� 0 = (e1�e2)(d})2=(}�e1)(}�e2)(}�e3) = 4(e1�e2)dz2 = 8e1dz

2:
On the other hand, we have (f Æ p)�'0 = 4dz2; hence g� 0 = 2e1f

�'0: Now we observe

(j 0j��2
Y0
)(g([z])) = 2e1

�jf �'0j��2
Z0

	
([z]) = 2e1(j'0j��2

X0
)(f([z])):

Note that the inverse image of [(1 + i)=2] under the map f is the set of four points
[(1 + i)=2 � 1=4 � i=4]; whose image under g consists of two points (1 � i)=2: Then, by
Corollary 4, we have

k 0kY0 = 4�Y0((1� i)=2)�2 = 2e1�X0
([(1 + i)=2])�2 = 2e1k'0kX0

:(2.2)

We now use the fact that the map h(z) = 4z(1�z) is an unbranched cover ofD0 from Y0

to show the relation �Y0(z) = h��(z) = �(h(z))jh0(z)j: In particular, letting z = (1� i)=2;
we have �Y0((1� i)=2) = 4�(2) = 4�(�1) = 8�2=�(1=4)4: Now (1.3) and Theorem 6 follow
from the last relation, (2.2) and (2.1).
The assertion of Theorem 6 means that the function jz(z � 1)(z � 1=2)j�Y0(z)2 attains

its minimum at the precisely two points z = (1� i)=2: Note that these two points project
to the same point 2 under the map h: If we set w = h(z); we have (2z � 1)2 = 1 � w:
Then, we calculate

jz(z � 1)(z � 1=2)j�Y0(z)2 = 8jz(z � 1)(2z � 1)3j�(h(z))2 = 2jwjjw� 1j3=2�(w)2
= 2M(1� w)2;

where we set M(w) = jwj3=4jw� 1j1=2�(w): Therefore, we can conclude that the function
M has the unique minimum point z = �1 in D0: This is nothing but the statement of
Theorem 1.

Remark 2. Noting the symmetricity properties

M(�z) =M(z) and M(1=z) =M(z)

ofM coming from (1.1), we can apply the topological method developed by Jenkins in [5]
to show the assertion in Theorem 1, if, for example, we could know that the functionM has
no local minimum on the upper half plane, for which the author has no proof unfortunately.
If we could do so, as a by-product, we would have the claim that jz � 1j1=2�(z) decreases
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on the unit circle z = ei� when � increases in (0; �]; which is stronger than Lemma 2 in
[5]. The last claim seems true for the circle z = rei� with arbitrary r > 0: Note also that
�(z) decreases and jz � 1j�(z) increases on the circle z = rei� when � increases in (0; �]:
The �rst assertion follows from Weitsman's theorem (Theorem A) and the second follows
from Corollary 2.14 (1) in the paper [16] by Solynin and Vuorinen. A more subtlety can
be seen by recalling the fact that jz(z � 1)j1=2�(z) is increases when z moves downward
along the left-upper quarter of the ellipse jzj + jz � 1j = c for any constant c > 1 (see
Corollary 3.5 in [16]).

3. Applications to Teichm�uller spaces

We conclude this note with applications to Teichm�uller spaces. We remind the reader
of basic de�nitions of Teichm�uller spaces. As a standard textbook, we refer to [8]. Let
R be a hyperbolic Riemann surface with Fuchsian group � as its covering transformation
group on the unit disk D : Then the space B2(R) can be canonically identi�ed with the
space B2(D ;�) consisting of those ' 2 B2(D ) for which (' Æ 
)(
0)2 = ' holds for any

 2 �; via the pull-back q� under the natural projection q : D ! R with covering group
�: The Bers embedding of the Teichm�uller space T (R) of R is de�ned as the set of those
' 2 B2(R) whose pull-backs are the Schwarzian derivatives Sf = (f 00=f 0)0� (f 00=f 0)2=2 of

univalent meromorphic maps f : D ! bC which extend to (�-compatible) quasiconformal

self-maps of the Riemann sphere bC : (For convenience, we adopt here a slightly di�erent
de�nition of the Teichm�uller space from the standard one. In the usual terminology, our
T (R) should be called (the Bers embedding of) the Teichm�uller space of the mirror image
R� of R:)
The inner radius Radi(T (R)) and outer radius Rado(T (R)) of T (R) are de�ned as the

numbers inffk'kR;' 2 @T (R)g and supfk'kR;' 2 @T (R)g; respectively. It is well known
that 2 � Radi(T (R)) < Rado(T (R)) � 6: Furthermore, when R is of �nite analytic type,
2 < Radi(T (R)) and Rado(T (R)) < 6 (see [18] and [14], respectively). Other than the
extreme cases of Radi(T (R)) = 2 or Rado(T (R)) = 6; no concrete values of the inner and
outer radii have been known.
We o�er numerical computations of these radii in the case ofX0 and Y0; which have been

treated above. Note that the spaces T (X0) and T (Y0) are isomorphic by an isometry of
the ambient spaces because of their commensurability (see [7]). In particular, their inner
and outer radii are respectively equal. By numerical computations of the shape of T (X0)
in [7] (see also Figure 1), the following assertion seems to be true, however no rigorous
proofs are known.

Conjecture 1. For the punctured square torus X0 = (C nL)=L; L = Z[i]; and '0 = dz2;

Radi(T (X0)) = supft > 0; t'0 2 T (X0)g:
In the below, we assume this conjecture to be true. M. Porter [13] showed that the

set ft 2 R; t'0 2 T (X0)g is actually an open interval and its positive endpoint is ap-
proximately 1:552: Therefore, combining this with Theorem 5, we observe Radi(T (X0)) �
1:552 � k'0kX0

� 2:162: Recently, by another method, it is calculated in [7] that supft >
0; t 0 2 T (Y0)g � 0:11289: So, we see that Radi(T (Y0)) � 2:1626 by Theorem 6, which
agrees with the above.
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On the other hand, we can observe the following interesting statement by computer
experiments based on the results in [7]. Let sj; j = 0; 1; 2; : : : be the Fibonacci sequence
determined by s0 = 0; s1 = 1 and sn = sn�1 + sn�2 for n > 1: Then, the endpoints of
rational pleating rays with slope sn=sn+1 seem the best approximation of the farthest
boundary point in the �rst quadrant from the origin (see Figure 1). The pleating ray
is sometimes called a bending locus. For the terminology, see [7]. The ray here is quite
similar to that of Keen and Series [6] for the Maskit slice; our ray is based on the bending
coordinate of the Bers slice of a punctured torus described by McMullen [11, Theorem
7.5].

0
1

1
1

1
2

2
3 3

5

5
8

0

Figure 1. Bending loci corresponding to the Fibonacci sequence

As is well known, the limit of the sequence sn=sn+1 is the reciprocal of the golden ratio,
that is, sn=sn+1 ! (

p
5� 1)=2:

Conjecture 2. Let X0 be a once-punctured square torus. The farthest boundary point of
T (X0) from the origin is one of the endpoints of the pleating rays with slope (�p5�1)=2;
where all signatures are possible.

Let tn'0 be the endpoint of the rational pleating ray with slope sn=sn+1 for n = 0; 1; : : : :
By numerical calculations, we have the following table (Table 1).
Letting t1 = limn!1 tn; we observe also that

����
tn � t1
tn+1 � t1

����
2

! �1 � 4:79 (n!1):
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slope sn=sn+1 absolute value of tn
0=1 0:1128908854
1=1 0:1283517305
1=2 0:1405040305
2=3 0:1471612491
3=5 0:1504617577
5=8 0:1520337855
8=13 0:1527685892
13=21 0:1531081637
21=34 0:1532643959
34=55 0:1533359695
55=89 0:1533687471
89=144 0:1533837257
144=233 0:1533905763
233=377 0:1533937047
377=610 0:1533951350
610=987 0:1533957881

Table 1. Distance of the endpoints from the origin

Hence, we �nd that Rado(T (X0)) is approximately 0:153396�k'0kY0 � 2:93862: So, we
have obtained the following

Observation . The Bers embedding of the Teichm�uller space of the once-punctured square
torus X0 or the symmetric four-times punctured sphere Y0 = bC n f0; 1=2; 1;1g has the
inner and outer radii, approximately, 2:1626 and 2:9386; respectively.

A related conjecture involving the Fibonacci sequence has been made by D. Wright
and C. McMullen in 1989 concerning the self-similarity of the Bers boundary about the
limits of pseudo-Anosov mappings. They have observed this picture through the Maskit
embedding of the Teichm�uller space of a once-punctured torus, which is thought to be
close to the Bers embedding and relatively easy to draw by computers. See [9] or [10,
Chapter 10] for more details.
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