INNER RADIUS OF UNIVALENCE FOR A STRONGLY STARLIKE
DOMAIN

TOSHIYUKI SUGAWA

ABSTRACT. The inner radius of univalence of a domain D with Poincaré density pp is the
possible largest number ¢ such that the condition ||S¢||p = sup,cp pp(w)72|S;(2)] < o
implies the univalence of f for a nonconstant meromorphic function f on D, where Sy
is the Schwarzian derivative of f. In this note, we give a lower bound of the inner radius
of univalence for strongly starlike domains of order a in terms of the order a.

1. MAIN RESULT

For a constant 0 < a < 1, a holomorphic function f on the unit disk is called strongly
starlike of order o if f'(0) # 0 and if f satisfies the condition
!
argL(z)‘ <™ (zeDp =D\ {0}

W 70— 10| = 2

Note that a strongly starlike function f is starlike in the usual sense, namely, f is univalent
and the image f(D) is starlike with respect to f(0). Every strongly starlike function f of
order o < 1 is bounded. In fact, Brannan and Kirwan [1] showed that

(2) 1f(z) = FO)| < [2f'(0)[M(a) (z € D).
Here M («) is defined by

N RE

= 1
3) :eXp{Qa;(2k+1)(2k+1—a)}

1 {_rf(u —a)/2) _7}’

1T —0)2)

where I' is the Euler gamma function and v = 0.5772... is the Euler constant.

A proper subdomain D of the complex plane C is said to be strongly starlike of order
« with respect to a point wg € D if D is simply connected and if the conformal map
f:D — D of D with f(0) = wy is strongly starlike of order «.. A strongly starlike domain
of order 1 is nothing but a usual starlike domain. In what follows, without any pain, we
always assume that wy = 0.
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We now introduce a standard domain adapted to the strong starlikeness. For a constant
a with 0 < a < 1, we denote by V,, the bounded domain enclosed by the logarithmic spirals
Yo = {exp((—tan(ra/2) +4)0);0 < 0 < 7} and 5, = {w; W € 7, }.

Let D be a proper subdomain of C containing the origin. It will be convenient to
consider the periodic function R = Rp : R — (0, +00] of period 27 defined by

R(0) = sup{r > 0;[0,7¢"’] c D},

where [a,b] denotes the closed line segment joining points a and b in C. Note that R is
lower semi-continuous.

In the sequel, we will use the convention a - D = {aw;w € D} for a € C and a domain
D. Also, set DY = I(Ext D), where Ext D = C\ D and I(z) = 1/z.

The next result will be fundamental for our aim here, whose proof can be found in [7].

Theorem A. Let D be a proper subdomain of C with 0 € D and let a be a constant with
0 < a < 1. Then the following conditions are equivalent.

(a) D is strongly starlike of order o with respect to the origin.

(b) DY is strongly starlike of order o with respect to the origin.
(¢) w -V, C D holds for each point w € D.
(d) The radius function R = Rp is bounded, absolutely continuous, and satisfies |R'/R| <

tan(ra/2) a.e. in R.

Remark.  The implication (a)=>(d) is essentially due to Fait, Krzyz and Zygmunt
[2]. Actually, we will employ their idea which was used to show the quasiconformal
extendability of strongly starlike functions.

Let D be a subdomain of C with the Poincaré (or hyperbolic) metric pp(w)|dw| of
constant curvature —4. The inner radius of univalence of D, which will be denoted by
o(D), is the possible maximal number ¢ for which the condition ||Sf||p < o implies
the univalence of the nonconstant meromorphic function f on D, where Sy denotes the
Schwarzian derivative (f"/f) — (f"/f")?/2 of f and ||¢|lp = sup,ep pp(w)2|e(w)].
Note that o(D) is Mobius invariant in the sense that o(L(D)) = o(D) for a Mdbius
transformation L. In particular, o(D") = o(Ext D). The reader may consult the textbook
[4] by Lehto as a general reference for the inner radius of univalence and related notions.
When D is simply connected, theorems of Ahlfors and Gehring imply that o(D) > 0 if
and only if D is a quasidisk and, furthermore, o(D) is estimated from below by a positive
constant ¢(K) depending only on K for a K-quasidisk D. However, it is hard to give an
explicit lower bound of o(D) for a concrete quasidisk D in general. Our main result is
concerned with the inner radius of univalence of strongly starlike domains.

Theorem 1. A strongly starlike domain D of order « satisfies

2 cos(rar/2)
M(a)? 1+ sin(ra/2)’

(4) o(D) >

where M () is defined by (3).



Remarks. 1. When « tends to 0, the right-hand side above tends to 2. On the other
hand, it is known that o(D) = 2. See also the final section.

2. By a result of Fait, Krzyz and Zygmunt [2], we know that a strongly starlike domain
D of order « is a K (a)-quasidisk, where (K (a) —1)/(K () + 1) = sin(ra/2). Hence, as a
corollary, we have o(D) > ¢(K(«)). So, the novelty of this theorem lies in the explicitness
of the estimate.

3. From Theorem 1 we observe that DV is strongly starlike of order oz under the as-
sumption of Theorem 1. Hence, we obtain o(Ext D) > 2 cos(ma/2)/(1+sin(ra/2)) M (a)?
simultaneously. We also note that the standard domain V,, has the property o(V,) =
o(Ext V).

2. MAPPING FUNCTION OF V,

Let S denote the set of holomorphic univalent functions on the unit disk D normalized
by f(0) =0 and f'(0) = 1. For 0 < a < 1, we define the function k, in the class S by the

relation
2kl (z) (14 2\°
ko(2)  \1-2z

on D. More explicitly, k, can be expressed by

e[ (1297 1))

This function is known to play a role of the usual Koebe function in the class of normalized
strongly starlike functions of order o in many cases. Actually k; is nothing but the Koebe
function.

Noting ko(1) = M(«), we consider the function

) () = ko) /31(0) x| [ (%g) Sk

The following fact is useful to note. Although this result was stated in [7], we give a
direct proof here for completeness.

Lemma 1. g,(D) =V, for 0 < a < 1.

Proof. If we set gq(e™) = 7(t)e’®® = R(0)e?, then we have e'g’ (e?)/ga(e") = O'(t) —
ir'(t)/r(t). Since arg(zg.,(2)/ga(2)) = Tv/2 for 2 = e with £ € (0,m), we obtain

RO _ ) .
RO) rH)e'(t) 2’
which yields log R(0) = —0tan(mwa/2) for § = ©(t) € (0,7). In the same way, we have

log R(—0) = —@ tan(mwa/2) for # € (0, 7). These imply that the radius function R of g, (D)
agrees with that of V,,, and hence g, (D) = V. O




3. PROOF OF MAIN THEOREM

First, we recall the construction of a quasiconformal reflection in the boundary of a
strongly starlike domain given by [2]. Let D be a strongly starlike domain of order
a € (0,1) with respect to the origin and let R be its radius function. Then we can take
the quasiconformal reflection A in 0D defined by

2
)\(’["eig) = meie
r
for all r > 0 and § € R. We then calculate
RR, = €2i0 . 2
(6) O\ =1 2 and 0\ = - (iRR' — R?)
at w = re'?,

Now we use a general estimate on the radius of univalence in terms of quasiconformal
reflections to prove our main result. The following estimate is first shown by Lehto [3] in
a restricted situation and is generalized to the present form by [6].

Theorem B. Let D be a quasidisk with quasiconformal reflection A in 0D. Then the
following inequality holds:
|0A(w)| — [OA(w)]

(7) (D) > e(\, D) := 2ess 1nf M) — P pp ()

Let us return to our case. By (6) and Theorem A (d), we obtain the estimates

(VI+TR/RP - |R/R))

oA~ Aw)] =
> —22 (\/1 + tan®(ra/2) — tan(wa/Z))
_E

cos(ma/2)
~r?2 1 +sin(re/2)
and
R? R%* —r?

Aw) —w|=— —r=
Mw) =l = —r = 2

for almost all w = re? € D.

Secondly, we estimate pp from above. Fix w = re? and set R = R(). If we think of
the domain W = wy - V,,, where wy = Re? € 0D, from Theorem A (c), we have W C D.
The monotoneity property of the Poincaré metric then implies pp(w) < pw(w). Now
we write 7, = py,. Then py (w) = 7o(w/wp)/|wy| = 7o(r/R)/R. Consequently, we have
pp(w) < 1,(r/R)/R.

Summarizing the above, we have the estimate

[0A(w)| — [0A(w)| _ B> < r )2 B2 cos(ra/?)
IANw) — w|?pp(w)? — 2 \R%2—1r2 To(r/R)? 1+ sin(ra/2)
B 1 cos(ma/2)
~ (1= (r/R)?)?1a(r/R)? 1 +sin(ra/2)




Hence,
2 cos(ma/2)
A\, D) > . .
s D) 2 SUPgey<1 (1 —u?)?7,(uw)? 1+ sin(ra/2)
Therefore, if we can show the following lemma, the proof of our main theorem will be
finished.

Lemma 2. The Poincaré density 7, of V., satisfies

02}21(1 —u)To(u) = M(a).

Proof. Since g, : D — V, is biholomorphic by Lemma 1, we have (1 — |z|*)”! =
Ta(9a(2))]gL(2)| for 2 € D. Note here that v = u(z) = go(x) > 0 and g, (z) > 0 for
positive x. If we set

= —u.’L‘QT u\xr :L(l')?
Q(l‘)—(l ( ) ) Oé( ( )) (1—272)’&/(.1')

for x € (0,1), we have only to show that () is non-increasing in the interval (0, 1) because
lim, 0 Q(7) = 72(0) = 1/g,(0)] = M(a).
Since zu'/u = {(1 4+ x)/(1 — x)}*, we have the expression
l—vw” z (1—2z\" = 1 —u?
l+z) u (I+z)te(l —z)le

Taking the logarithmic derivative, we obtain

Q=

1—22 u

Q' o' 1+4+u? 2x(z—a) 1-2ar+2®> 1+4+u® [(14+2\"
rT— — - . = — .
Q u 1 —u? 1— 2?2 1—x? 1—u2\1—2x
Therefore, @' < 0 if and only if
1—u2S L+2\* 1-a :(1+x)1+°‘(1—x)1_0‘ P,
14 u? 1—x 1 —2ax + 22 1 —2ax + 22

By representation (5), we see

1 —u? /’” 1+¢\“dt
— —tanh |— — ) =|.
1 4 u? 1 \1-—t t

Hence, the assertion ' > 0 on the interval (0,1) is further equivalent to the validity of

the statement that .
14+t\"dt
/ <i> — < arctanhP(x)
C\1—t) ¢
holds whenever P(z) < 1.
We now investigate the behaviour of the function P on (0, 1). Since
P'(x) 4(z — a)(ax — 1)

P(z) (1 —22)(1 - 2azx+ 22)’

P is increasing in (0,«) and decreasing in (a,1). Noting P(0) = 1 and P(1) = 0, we
observe that P(z) > 1 for z € (0,3) and that 0 < P(z) < 1 for z € (f3,1) for some
number ( between o and 1. Here, we use the following elementary fact.



Lemma 3. Let S and T be continuous functions on the interval (3,1] that are positive,
have continuous integrable derivatives on (3,1) and satisfy S(1) =T(1) =0 and S'(z) <
T'(z) for x € (3,1). Then S(x) > T'(x) for x € (3,1].

Thus it is enough to show the inequality

L/1+z\"_ d P'(x)
_Z > & hP(z) = — )
x (1 — x) - dxarctan (z) 1 — P(z)?

— Az — a)(1 — az) — <1 + x)

(1 =20z + 22)? — (1 + z)*+2e(1 — 11—z
for x € (,1). This inequality is equivalent to
(1 —2ax +2%)* — (1 +2)**(1 — 2)*2* < da(r — a)(1 — azx)
& (1+2)°7%(1 - 2)7%* > (1 — 20z + 2°)% — dz(r — a)(1 — az) = (1 — 2°)?

1 2
@( J””) > 1,
1—=x

The last inequality is certainly valid for x € (0,1). So, now the proof is complete. O

Remark. We can see from the proof that £(\, V,) = 2cos(ra/2)/(1+sin(ra/2)) M (a)?
holds, where A is the quasiconformal reflection constructed for V,, as above.

4. UPPER ESTIMATE OF THE RADIUS OF UNIVALENCE

Set £(a) = 2cos(ra/2)/(1+sin(ra/2)) M (a)? and let n(a) be the possible largest value
for which n(a) < o(D) holds for any strongly starlike domain D of order a.. Theorem 1
says that £(a) < n(a) for 0 < a < 1. In this section, we give an upper bound for n(«) in
order to examine how close the bound &(«) is to n(«). To this end, we give a rough upper
estimate of o (V).

Theorem 2. For 0 < a < 1, the inequality (V) < 2(1 — «)? holds.

Proof. We consider the holomorphic function f(w) = log(1—w) on the domain C\[1, 4+00).
Although f is univalent, f(V,) has an outward pointing cusp. So, f(V,) is not a quasidisk.
On the other hand, for a quasidisk D, if ||Sy||p < o(D), we know that f(D) is also a
quasidisk (see [4, p. 120]). Hence, we conclude o(V,) < ||S||v, for the above f.

Now we estimate ||S¢||v,. First note that V, C W := {w;|arg(l —w)| < (1 — a)7/2}.
By the monotoneity of the Poincaré metric, we have ||S¢|[v, < ||S¢|lw. Since (1 —w)Y/ (=)
maps W conformally onto the right half plane, we compute

1 — p[e/(-0)
2(1 — @)Re (1 — w)t/(=a)]"
On the other hand, Sy(w) = 1/2(1 — w)?. Thus, we calculate

1Ss]lw = sup 2(1 — a)*Re w =2(1 - a)?
T ew 1= w0 :

Now the proof is completed. O

pw(w) =



Remark. Since V,, has a corner of opening (1 — «)7, the above estimate follows also
from Lemma 3.3 in the paper [5] by Miller-Van Wieren.

Note that &(a) < n(a) < o(V,) < 2(1 — ). We exhibit the graphs of the functions
&(a) and 2(1 — a)? below.

REFERENCES

1. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math.
Soc. (2) 1 (1969), 431-443.

2. M. Fait, J. G. Krzyz, and J. Zygmunt, FEzplicit quasiconformal extensions for some classes of univalent
functions, Comment. Math. Helv. 51 (1976), 279-285.

3. O. Lehto, Remarks on Nehari’s theorem about the Schwarzian derivative and schlicht functions, J.
Analyse Math. 36 (1979), 184-190.

, Univalent Functions and Teichmiiller Spaces, Springer-Verlag, 1987.

5. L. Miller-Van Wieren, On Nehari disks and the inner radius, Comment. Math. Helv. 76 (2001), 183~
199.

6. T. Sugawa, A remark on the Ahlfors-Lehto univalence criterion, to appear in Ann. Acad. Sci. Fenn.
A T Math.

, A self-duality of strong starlikeness, preprint.

DEPARTMENT OF MATHEMATICS, KyOoTO UNIVERSITY, 606-8502 KYOTO, JAPAN

Current address: Department of Mathematics, University of Helsinki, Yliopistonkatu 5, 00014, Helsinki,
Finland

E-mail address: sugawa@kusm.kyoto-u.ac.jp



