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Abstract. The inner radius of univalence of a domainD with Poincar�e density �D is the
possible largest number � such that the condition kSfkD = supw2D �D(w)

�2jSf (z)j � �

implies the univalence of f for a nonconstant meromorphic function f on D; where Sf
is the Schwarzian derivative of f: In this note, we give a lower bound of the inner radius
of univalence for strongly starlike domains of order � in terms of the order �:

1. Main result

For a constant 0 � � � 1; a holomorphic function f on the unit disk is called strongly

starlike of order � if f 0(0) 6= 0 and if f satis�es the condition����arg zf 0(z)

f(z)� f(0)

���� � ��

2
(z 2 D

� = D n f0g):(1)

Note that a strongly starlike function f is starlike in the usual sense, namely, f is univalent
and the image f(D ) is starlike with respect to f(0): Every strongly starlike function f of
order � < 1 is bounded. In fact, Brannan and Kirwan [1] showed that

jf(z)� f(0)j � jzf 0(0)jM(�) (z 2 D ):(2)

Here M(�) is de�ned by

M(�) = exp

�Z 1

0

��
1 + t

1� t

��

� 1

�
dt

t

�
= exp

(
2�

1X
k=0

1

(2k + 1)(2k + 1� �)

)
(3)

=
1

4
exp

�
�
�0((1� �)=2)

�((1� �)=2)
� 

�
;

where � is the Euler gamma function and  = 0:5772 : : : is the Euler constant.
A proper subdomain D of the complex plane C is said to be strongly starlike of order

� with respect to a point w0 2 D if D is simply connected and if the conformal map
f : D ! D of D with f(0) = w0 is strongly starlike of order �: A strongly starlike domain
of order 1 is nothing but a usual starlike domain. In what follows, without any pain, we
always assume that w0 = 0:
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We now introduce a standard domain adapted to the strong starlikeness. For a constant
� with 0 < � < 1; we denote by V� the bounded domain enclosed by the logarithmic spirals
� = fexp((� tan(��=2) + i)�); 0 � � � �g and �� = fw; �w 2 �g:
Let D be a proper subdomain of C containing the origin. It will be convenient to

consider the periodic function R = RD : R ! (0;+1] of period 2� de�ned by

R(�) = supfr > 0; [0; rei�] � Dg;

where [a; b] denotes the closed line segment joining points a and b in C : Note that R is
lower semi-continuous.
In the sequel, we will use the convention a �D = faw;w 2 Dg for a 2 C and a domain

D: Also, set D_ = I(ExtD); where ExtD = bC nD and I(z) = 1=z:
The next result will be fundamental for our aim here, whose proof can be found in [7].

Theorem A. Let D be a proper subdomain of C with 0 2 D and let � be a constant with

0 < � < 1: Then the following conditions are equivalent.

(a) D is strongly starlike of order � with respect to the origin.

(b) D_ is strongly starlike of order � with respect to the origin.

(c) w � V� � D holds for each point w 2 D:
(d) The radius function R = RD is bounded, absolutely continuous, and satis�es jR0=Rj �

tan(��=2) a.e. in R:

Remark. The implication (a))(d) is essentially due to Fait, Krzy_z and Zygmunt
[2]. Actually, we will employ their idea which was used to show the quasiconformal
extendability of strongly starlike functions.

Let D be a subdomain of C with the Poincar�e (or hyperbolic) metric �D(w)jdwj of
constant curvature �4: The inner radius of univalence of D; which will be denoted by
�(D); is the possible maximal number � for which the condition kSfkD � � implies
the univalence of the nonconstant meromorphic function f on D; where Sf denotes the
Schwarzian derivative (f 00=f 0)0 � (f 00=f 0)2=2 of f and k'kD = supw2D �D(w)

�2j'(w)j:
Note that �(D) is M�obius invariant in the sense that �(L(D)) = �(D) for a M�obius
transformation L: In particular, �(D_) = �(ExtD): The reader may consult the textbook
[4] by Lehto as a general reference for the inner radius of univalence and related notions.
When D is simply connected, theorems of Ahlfors and Gehring imply that �(D) > 0 if
and only if D is a quasidisk and, furthermore, �(D) is estimated from below by a positive
constant c(K) depending only on K for a K-quasidisk D: However, it is hard to give an
explicit lower bound of �(D) for a concrete quasidisk D in general. Our main result is
concerned with the inner radius of univalence of strongly starlike domains.

Theorem 1. A strongly starlike domain D of order � satis�es

�(D) �
2

M(�)2
�

cos(��=2)

1 + sin(��=2)
;(4)

where M(�) is de�ned by (3).
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Remarks. 1. When � tends to 0; the right-hand side above tends to 2: On the other
hand, it is known that �(D ) = 2: See also the �nal section.
2. By a result of Fait, Krzy_z and Zygmunt [2], we know that a strongly starlike domain

D of order � is a K(�)-quasidisk, where (K(�)� 1)=(K(�)+ 1) = sin(��=2): Hence, as a
corollary, we have �(D) � c(K(�)): So, the novelty of this theorem lies in the explicitness
of the estimate.
3. From Theorem 1 we observe that D_ is strongly starlike of order � under the as-

sumption of Theorem 1. Hence, we obtain �(ExtD) � 2 cos(��=2)=(1+sin(��=2))M(�)2

simultaneously. We also note that the standard domain V� has the property �(V�) =
�(ExtV�):

2. Mapping function of V�

Let S denote the set of holomorphic univalent functions on the unit disk D normalized
by f(0) = 0 and f 0(0) = 1: For 0 � � � 1; we de�ne the function k� in the class S by the
relation

zk0�(z)

k�(z)
=

�
1 + z

1� z

��

on D : More explicitly, k� can be expressed by

k�(z) = z exp

�Z z

0

��
1 + �

1� �

��

� 1

�
d�

�

�
:

This function is known to play a role of the usual Koebe function in the class of normalized
strongly starlike functions of order � in many cases. Actually k1 is nothing but the Koebe
function.
Noting k�(1) = M(�); we consider the function

g�(z) = k�(z)=M(�) = exp

�Z z

1

�
1 + �

1� �

�� d�

�

�
:(5)

The following fact is useful to note. Although this result was stated in [7], we give a
direct proof here for completeness.

Lemma 1. g�(D ) = V� for 0 < � < 1:

Proof. If we set g�(e
it) = r(t)ei�(t) = R(�)ei�; then we have eitg0�(e

it)=g�(e
it) = �0(t) �

ir0(t)=r(t): Since arg(zg0�(z)=g�(z)) = ��=2 for z = eit with t 2 (0; �); we obtain

R0(�)

R(�)
=

r0(t)

r(t)�0(t)
= � tan

��

2
;

which yields logR(�) = �� tan(��=2) for � = �(t) 2 (0; �): In the same way, we have
logR(��) = �� tan(��=2) for � 2 (0; �): These imply that the radius function R of g�(D )
agrees with that of V�; and hence g�(D ) = V�:
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3. Proof of Main Theorem

First, we recall the construction of a quasiconformal reection in the boundary of a
strongly starlike domain given by [2]. Let D be a strongly starlike domain of order
� 2 (0; 1) with respect to the origin and let R be its radius function. Then we can take
the quasiconformal reection � in @D de�ned by

�(rei�) =
R(�)2

r
ei�

for all r > 0 and � 2 R: We then calculate

@� = i
RR0

r2
and �@� =

e2i�

r2
(iRR0 � R2)(6)

at w = rei�:
Now we use a general estimate on the radius of univalence in terms of quasiconformal

reections to prove our main result. The following estimate is �rst shown by Lehto [3] in
a restricted situation and is generalized to the present form by [6].

Theorem B. Let D be a quasidisk with quasiconformal reection � in @D: Then the

following inequality holds:

�(D) � "(�;D) := 2 ess: inf
w2D

j�@�(w)j � j@�(w)j

j�(w)� wj2�D(w)2
:(7)

Let us return to our case. By (6) and Theorem A (d), we obtain the estimates

j�@�(w)j � j@�(w)j =
R2

r2

�p
1 + jR0=Rj2 � jR0=Rj

�
�

R2

r2

�q
1 + tan2(��=2)� tan(��=2)

�
=

R2

r2
�

cos(��=2)

1 + sin(��=2)

and

j�(w)� wj =
R2

r
� r =

R2 � r2

r

for almost all w = rei� 2 D:
Secondly, we estimate �D from above. Fix w = rei� and set R = R(�): If we think of

the domain W = w0 � V�; where w0 = Rei� 2 @D; from Theorem A (c), we have W � D:
The monotoneity property of the Poincar�e metric then implies �D(w) � �W (w): Now
we write �� = �V� : Then �W (w) = ��(w=w0)=jw0j = ��(r=R)=R: Consequently, we have
�D(w) � ��(r=R)=R:
Summarizing the above, we have the estimate

j�@�(w)j � j@�(w)j

j�(w)� wj2�D(w)2
�

R2

r2
�

�
r

R2 � r2

�2

�
R2

��(r=R)2
�

cos(��=2)

1 + sin(��=2)

=
1

(1� (r=R)2)2��(r=R)2
�

cos(��=2)

1 + sin(��=2)
:
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Hence,

"(�;D) �
2

sup0<u<1(1� u2)2��(u)2
�

cos(��=2)

1 + sin(��=2)
:

Therefore, if we can show the following lemma, the proof of our main theorem will be
�nished.

Lemma 2. The Poincar�e density �� of V� satis�es

sup
0<u<1

(1� u2)��(u) = M(�):

Proof. Since g� : D ! V� is biholomorphic by Lemma 1, we have (1 � jzj2)�1 =
��(g�(z))jg

0

�(z)j for z 2 D : Note here that u = u(x) = g�(x) > 0 and g0�(x) > 0 for
positive x: If we set

Q(x) = (1� u(x)2)��(u(x)) =
1� u(x)2

(1� x2)u0(x)

for x 2 (0; 1); we have only to show that Q is non-increasing in the interval (0; 1) because
limx!0Q(x) = ��(0) = 1=jg0�(0)j = M(�):
Since xu0=u = f(1 + x)=(1� x)g�; we have the expression

Q =
1� u2

1� x2
�
x

u
�

�
1� x

1 + x

��

=
x

u
�

1� u2

(1 + x)1+�(1� x)1��
:

Taking the logarithmic derivative, we obtain

x
Q0

Q
= 1�

xu0

u
�
1 + u2

1� u2
+

2x(x� �)

1� x2
=

1� 2�x+ x2

1� x2
�

1 + u2

1� u2

�
1 + x

1� x

��

:

Therefore, Q0 � 0 if and only if

1� u2

1 + u2
�

�
1 + x

1� x

��

�
1� x2

1� 2�x+ x2
=

(1 + x)1+�(1� x)1��

1� 2�x+ x2
=: P (x):

By representation (5), we see

1� u2

1 + u2
= tanh

�
�

Z x

1

�
1 + t

1� t

��
dt

t

�
:

Hence, the assertion Q0 � 0 on the interval (0; 1) is further equivalent to the validity of
the statement that Z 1

x

�
1 + t

1� t

��
dt

t
� arctanhP (x)

holds whenever P (x) < 1:
We now investigate the behaviour of the function P on (0; 1): Since

P 0(x)

P (x)
=

4(x� �)(�x� 1)

(1� x2)(1� 2�x+ x2)
;

P is increasing in (0; �) and decreasing in (�; 1): Noting P (0) = 1 and P (1) = 0; we
observe that P (x) > 1 for x 2 (0; �) and that 0 < P (x) < 1 for x 2 (�; 1) for some
number � between � and 1: Here, we use the following elementary fact.
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Lemma 3. Let S and T be continuous functions on the interval (�; 1] that are positive,

have continuous integrable derivatives on (�; 1) and satisfy S(1) = T (1) = 0 and S 0(x) �
T 0(x) for x 2 (�; 1): Then S(x) � T (x) for x 2 (�; 1]:

Thus it is enough to show the inequality

�
1

x

�
1 + x

1� x

��

�
d

dx
arctanhP (x) =

P 0(x)

1� P (x)2

=
�4(x� �)(1� �x)

(1� 2�x+ x2)2 � (1 + x)2+2�(1� x)2�2�

�
1 + x

1� x

��

for x 2 (�; 1): This inequality is equivalent to

(1� 2�x+ x2)2 � (1 + x)2+2�(1� x)2�2� � 4x(x� �)(1� �x)

, (1 + x)2+2�(1� x)2�2� � (1� 2�x+ x2)2 � 4x(x� �)(1� �x) = (1� x2)2

,

�
1 + x

1� x

�2�

� 1:

The last inequality is certainly valid for x 2 (0; 1): So, now the proof is complete.

Remark. We can see from the proof that "(�; V�) = 2 cos(��=2)=(1+sin(��=2))M(�)2

holds, where � is the quasiconformal reection constructed for V� as above.

4. Upper estimate of the radius of univalence

Set �(�) = 2 cos(��=2)=(1+sin(��=2))M(�)2 and let �(�) be the possible largest value
for which �(�) � �(D) holds for any strongly starlike domain D of order �: Theorem 1
says that �(�) � �(�) for 0 < � < 1: In this section, we give an upper bound for �(�) in
order to examine how close the bound �(�) is to �(�): To this end, we give a rough upper
estimate of �(V�):

Theorem 2. For 0 < � < 1; the inequality �(V�) � 2(1� �)2 holds.

Proof. We consider the holomorphic function f(w) = log(1�w) on the domain C n[1;+1):
Although f is univalent, f(V�) has an outward pointing cusp. So, f(V�) is not a quasidisk.
On the other hand, for a quasidisk D; if kSfkD < �(D); we know that f(D) is also a
quasidisk (see [4, p. 120]). Hence, we conclude �(V�) � kSfkV� for the above f:
Now we estimate kSfkV� : First note that V� � W := fw; j arg(1� w)j < (1� �)�=2g:

By the monotoneity of the Poincar�e metric, we have kSfkV� � kSfkW : Since (1�w)1=(1��)

maps W conformally onto the right half plane, we compute

�W (w) =
j1� wj�=(1��)

2(1� �)Re [(1� w)1=(1��)]
:

On the other hand, Sf (w) = 1=2(1� w)2: Thus, we calculate

kSfkW = sup
w2W

2(1� �)2Re

�
(1� w)1=(1��)

j1� wj1=(1��)

�
= 2(1� �)2:

Now the proof is completed.
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Remark. Since V� has a corner of opening (1 � �)�; the above estimate follows also
from Lemma 3.3 in the paper [5] by Miller-Van Wieren.

Note that �(�) � �(�) � �(V�) � 2(1 � �)2: We exhibit the graphs of the functions
�(�) and 2(1� �)2 below.
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