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Abstract. In this paper, we de�ne a conformally invariant (pseudo-)metric on all Rie-
mann surfaces in terms of integrable holomorphic quadratic di�erentials and analyze it.
This metric is closely related to an extremal problem on the surface. As a result, we
have a kind of reproducing formula for integrable quadratic di�erentials. Furthermore,
we establish a new characterization of boundedness of geometry of hyperbolic Riemann
surfaces in terms of invariant metrics.

1. Introduction

Throughtout this paper, R denotes a hyperbolic Riemann surface with hyperbolic met-
ric �R = �R(z)jdzj of constant negative Gaussian curvature �4:
For integers m and n; let ! be a di�erential (m;n)-form on R; namely, ! is a section of

the line bundle K
m
R 
 K
n

R ; where KR denotes the canonical bundle over R: For a local
coordinate z = �(p) from an open set U� of R onto an open set V� of C ; we will write
! = !�(z)dz

md�zn on U�; where !� is a function on V�: Recall that the transition relation
!�(w)(w

0)m(w0)n = !�(z); where w = � Æ ��1(z) and w0 = dw=dz: An (m; 0)-form will
be just called an m-form. Traditionally, a 2-form is called a quadratic di�erential. If no
confusion will occur, we sometimes omit the suÆx indicating the local coordinate.
We also note that in the casem = n = 1=2 the above de�nition still has meaning because

we can well de�ne (w0)1=2(w0)1=2 as jw0j and the positivity of coeÆcients is preserved by
the change of local coordinates. We will write jdzj instead of dz1=2d�z1=2: A positive (or
non-negative) (1=2; 1=2)-form on R will be called a (conformal) metric (or pseudo-metric)
on R:
We recall that a non-negative (1; 1)-form ! = !(z)jdzj2 can be regarded as an area

element on the surface under the identi�cation jdzj2 = dx ^ dy; where z = x + iy:
Let f : R! R0 be a holomorphic map. Then we can de�ne the pullback of an (m;n)-

form ! on R0 by f , which will be denoted by f �!; by

(f �!)�(z) = !�(w)(w
0)m(w0)n;

where � and � are local coordinates of R and R0; respectively, such that f(U�) � U� and
w = � Æ f Æ ��1(z):
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We consider the following vector spaces of di�erentials on R :


(R) = f! = !(z)dz; holomorphic 1-form on R; k!k22 =
ZZ

R

j!(z)j2dxdy <1g;

A(R) = f' = '(z)dz2; holomorphic 2-form on R; k'k1 =
ZZ

R

j'(z)jdxdy <1g;
B(R) = f' = '(z)dz2; holomorphic 2-form on R; k'k1 = sup

p2R
��2R j'j(p) <1g:

The spaces A(R) and B(R) are important in Teichm�uller theory and are sometimes
called the Bers spaces. A hyperbolic Riemann surface will be called non-exceptional

if dimA(R) > 0: Note that an exceptional one is conformally equivalent to a thrice
punctured sphere.
We now de�ne two invariant pseudo-metrics bR and qR by using the above spaces. We

set

bR;�(z) = supfj!�(z)j;! 2 
(R) with k!k2 �
p
�g and

qR;�(z) = supfj'�(z)j1=2;' 2 A(R) with k'k1 � �g
for each local coordinate z = �(p) of R:

The �rst one is known to be expressed by bR(z) =
p
�KR(z; z) where KR(z; w)dzd �w

is the Bergman kernel of R: The second one is new as far as the author knows. These
pseudo-metrics satisfy the following fundamental properties.

Lemma 1.1 ([20]). The metrics bR and qR are continuous, normalized, conformally in-

variant and monotonic. More precisely,

1. bR and qR are continuous and log bR and log qR are subharmonic or identically �1;
2. for the unit disk D = fjzj < 1g we have bD (z) = qD (z) = 1=(1� jzj2);
3. for a biholomorphic map f : R! R0 we have f �bR0 = bR and f �qR0 = qR; and
4. for a subdomain R0 of R we have bR0

� bR and qR0
� qR:

The �rst property follows from a certain compactness property of closed balls of 
(R)
and A(R): The second property is a consequence of the mean value property of holomor-
phic functions (see the calculation at the end of Section 2). The other properties can be
directly seen.
The next result is one of motivations for the present work.

Proposition 1.2 ([20]). We have

bR � qR � hR;

where hR denotes the Hahn metric on R:

The Hahn metric hR = hR;�(z)jdzj is conformally invariant and de�ned by

hR;�(z) = inf
f
j(� Æ f)0(0)j�1;

where the in�mum is taken over all injective holomorphic maps f from the unit disk D

into R with f(0) = ��1(z): A systematic treatment of the Hahn metric can be found in
[12]. We just recall here a few useful facts.
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Lemma 1.3 (Minda [12]). The Hahn metric is comparable with the quasi-hyperbolic met-

ric for a plane domain. Precisely, the following inequality holds for a proper subdomain


 of C :
1

4Æ
(z)
� h
(z) � 1

Æ
(z)
;

where Æ
(z) = minfjz � aj; a 2 @
g:
Denote by �R(p) the injectivity radius of R at the point p: In other words, 2�R(p) =

inf
R

�(z)jdzj; where the in�mum is taken over all smooth closed curves  passing through

p which are not contractible in R: Then we have the following result.

Lemma 1.4 (Gotoh [4]).
coth �R

4
� hR
�R

� coth �R:

We will need also the following.

Lemma 1.5 (Minda [12]). Let f : eR ! R be a holomorphic covering map. Then h
eR �

f �hR holds.

Proof of Proposition 1.2. For each ! 2 
(R) with k!k2 �
p
�; the square !
! belongs to

A(R) and satis�es k!
!k1 = k!k22 � �: Therefore, we have j!(z)j = j!
!(z)j1=2 � qR(z);
which implies bR(z) � qR(z): The inequality qR � hR follows from properties 2,3 and 4 in
Lemma 1.1 (see [20]).

For a planar Riemann surface R; it is known that bR � 0 if and only if R does not carry
the Green function (i.e., R 2 OG). Furthermore, a puncture is removable with respect
to square integrable holormophic 1-forms, and hence we have bR�fp0g � bR for any point
p0 2 R: In contrast, we have the following.

Lemma 1.6. For a non-exceptional hyperbolic Riemann surface R; we have qR(p) > 0
for each point p of R: For a proper subdomain R0 of R; the metric bR0

is not identically

equal to bR on R0:

Proof. When R is planar, R can be embedded in the complex plane C : Then R omits
at least three points, say a; b and c; in the plane because R is non-exceptional. Thus the
holomorphic quadratic di�erential dz2=(z � a)(z � b)(z � c) on R is integrable and has
no zeros there. When R is not planar, the space 
(R) has positive dimension. In this
case, Virtanen's theorem (see [18, p. 43]) tells us that bR(p) > 0 at each point p 2 R: By
Proposition 1.2 we have the conclusion in this case, too.

Another motivation comes from the relation between the Bers spaces A(R) and B(R):
Once upon a time, it had been conjectured that A(R) � B(R) for all Riemann surfaces.
This was easily proved in the case that R is of �nite type. Lehner is the �rst person who
gave a suÆcient condition for this inclusion relation to be valid for Riemann surfaces of
ini�nite topological type (see [7]). Later, Pommerenke [16] disproved the conjecture by
showing that there exists a holomorphic 1-form ! on R which is hyperbolically bounded,
i.e., ��1R j!j is bounded, but is not square integrable on R for some Riemann surface R:
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(Recently, more geometric constructions for counterexamples were given by Ohsawa [15]
and Matsuzaki [10].)
Finally, Niebur and Sheingorn [13] gave a complete answer to this problem: A(R) �

B(R) if and only if ��(R) > 0; where ��(R) denotes the in�mum of hyperbolic lengths of
those simple closed curves in R which are homotopic to neither a point nor a puncture.
We will say that a Riemann surface R with the property ��(R) > 0 is of Lehner type.
If the in�mum �(R) of hyperbolic lengths of simple closed curves in R which are not
homotopic to any point is positive, then R is said to be of bounded geometry. Since
2 infp2R �R(p) = �(R); this property is equivalent to the condition that the (hyperbolic)
injectivity radius has a positive lower bound on R:
Note that �(R) = 0 if R has a puncture and �(R) = ��(R) otherwise. We have the

following characterization of boundedness of geometry in terms of invariant metrics.

Proposition 1.7 (cf. [19]). A hyperbolic Riemann surface R is of bounded geometry, i.e.,

�(R) > 0 if and only if the Hahn metric is comparable with the Poincar�e metric:

sup
p2R

hR
�R

(p) < +1:

In this paper, we provide a new characterization of boundedness of geometry as in the
following.

Theorem 1.8. A hyperbolic Riemann surface R is of bounded geometry, i.e., �(R) > 0
if and only if

H(R) := sup
p2R

hR
qR

(p) < +1:

Note that there is no order relation between �R and qR in general (see the remark made
at the end of Section 3). We will give a proof of this in Section 5 with a more concrete
estimate (Theorem 5.1).
If A(R) � B(R); we set

�(R) = supfk'k1;' 2 A(R) with k'k1 � �g:
Note that �(R) < +1 by the closed graph theorem. If A(R) is not contained in B(R);
we set �(R) = +1: Recently, Matsuzaki [9] obtained a concrete estimate of this quantity:

1

2��(R)
� �(R) � min

�
c1

��(R)
; c2

�
;(1.1)

where c1 and c2 are positive absolute constants. The following result will enable us
to deduce a re�nement of Matsuzaki's result in the sence that the ratio qR=�R may be
regarded as a localization of the global quantity �(R): In fact, as an application, we
reproduce Matsuzaki's inequality with concrete constants (Theorem 4.6) in Section 4.

Proposition 1.9. We have the relation

�(R) = sup
p2R

�
qR
�R

(p)

�2

:
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Proof. Setting A0(R) = f' 2 A(R); k'k1 � �g; we calculate
�(R) = sup

'2A0(R)

k'k1 = sup
'2A0(R)

sup
p2R

��2R j'j(p) = sup
p2R

sup
'2A0(R)

��2R j'j(p) = sup
p2R

��2R q2R(p):

In particular, we have the following characterization of Riemann surfaces of Lehner
type, which should be compared with Proposition 1.7 and Theorem 1.8.

Corollary 1.10. A hyperbolic Riemann surface R is of Lehner type, i.e., ��(R) > 0 if

and only if the metric qR is dominated by the Poincar�e metric �R; that is,

sup
p2R

qR
�R

(p) < +1:

We now briey explain the structure of the present paper. In Section 2, we consider an
extremal problem in connection with our metric qR to obtain a reproducing formula for
A(R): Section 3 will be devoted to a preliminary investigation of qR for doubly connected
domains R: Using the results in Section 3, we deduce upper and lower estimates of qR
around a short geodesic and a puncture in Section 4. In Section 5, we will prove the char-
acterization theorem (Theorem 1.8) for boundedness of geometry (equivalently, uniform
perfectness of the \boundary") as was promised. We will provide a lower estimate of qR
in terms of the (logarithmic) capacity metric for R =2 OG in Section 6. Section 7 will treat
the connection with the usual kernel function for A(R):

2. Extremal problem for quadratic differentials

Which quadratic di�erential does attain the supremum in the de�nition of the metric
qR? By de�nition, we see

qR;�(z0)
2 = sup

'2A0(R)

Re'�(z0);(2.1)

where A0(R) = f' 2 A(R); k'k1 � �g: The extremal problem to �nd a di�erential
' 2 A0(R) attaining the supremum in (2.1) has a unique solution and leads to a kind of
reproducing formula for integrable holomorphic quadratic di�erentials on R:

Theorem 2.1. Let z = �(p) be a local coordinate of a non-exceptional Riemann surface

R: For each point z0 2 V� there exists a unique ' 2 A(R) such that

qR;�(z0)
2 = '�(z0):

Furthermore, k'k1 = � and the following formula holds:

 �(z0) =
qR;�(z)

2

�

ZZ
R

j'j
'
 ( 2 A(R)):(2.2)

Conversely, if a non-zero element ' in A(R) satis�es relation (2.2), then �'=k'k1 is a

solution of the extremal problem (2.1).

Proof. We omit the suÆx � below. Take a sequence 'n in A0(R) such that Re'n(z0)!
qR(z0)

2 as n!1: Since A0(R) is a normal family, we may assume that the sequence 'n
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converges to a holomorphic quadratic di�erential ' uniformly on each compact subset of
R: Recalling Lemma 1.6, we can see

qR(z0)
2 = Re'(z0) = '(z0) > 0:(2.3)

Fatou's lemma yields

k'k1 � lim
n!1

k'nk1 � �:

In fact, k'k1 = � because of the extremality of ': Thus we have shown the existence of
an extremal di�erential ':
Next we prove equality (2.2). Let  2 A(R) be linearly independent of ' over the real

�eld and consider the function f(t) = k' + t k1 of t 2 R: Then the extremality of '
implies the inequality

Re ('(z0) + t (z0))

f(t)
� Re'(z0)

f(0)
=
qR(z0)

2

�
:

Since jj' + t j � j'jj � jtjj j and since ja + tbj = jaj + tjajRe (b=a) + o(t) as t! 0 in R

for complex numbers a and b; Lebesgue's dominated convergence theorem produces

f(t) = f(0) + tRe

ZZ
R

j'j
'
 + o(t)

as t! 0: Hence we have

qR(z0)
2 + tRe (z0) � qR(z0)

2

�

�
� + tRe

ZZ
R

j'j
'
 + o(t)

�
as t! 0: Since t may take both signs, this inequality forces

Re (z0) = ��1qR(z0)2Re
ZZ

R

j'j =':

This equality also holds for ei� instead of  ; so we can eliminate the symbol \Re" from
this equality. Thus (2.2) is now established.
Finally, we show the uniqueness of the extremal di�erential ': Suppose that '1 2 A0(R)

is also an extremal di�erential at z0; i.e., qR(z0)
2 = '1(z0): Then, applying  = '1 to

(2.2), we obtain

qR(z0)
2 = '1(z0) =

qR(z0)
2

�
Re

ZZ
R

j'j
'
'1:

We now estimate

� = Re

ZZ
R

j'j
'
'1 �

����ZZ
R

j'j
'
'1

���� � ZZ
R

j'1j � �:

Therefore, equalities hold above and the argument of j'j'1=' must be identically 0; which
implies that '1=' is a positive constant. Thus '1 = ' and the uniqueness is now proved.
The latter part of the theorem is trivial.

Remark. The extremal di�erential ' above depends on the choice of the local coordinate
�: To be more precise, we write ' = '�;z0R : If we take another local coordinate � around
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p0 = ��1(z0); then we have

'
�;w(z0)
R

w0(z0)
w0(z0)

= '�;z0R ;

where w(z) = � Æ ��1(z): In other words, the extremal di�erential at p can be written as

'R(r; p) = 'R;�;�(�; z)d�
2d�z

dz
;

where � = �(r) ; z = �(p) and 'R;�;�(�; z) = '�;zR;�(�): This means that 'R is a section

of the line bundle K
2
R � (K�

R 
 KR) over R � R; where � stands for the external tensor
product.

It is convenient to record the following translation formula under the notation in the
above remark.

Lemma 2.2. Let D and D0 be plane domains and F : D ! D0 be a conformal map.

Then we have

'D0(F (�); F (z))F 0(�)2
F 0(z)
F 0(z)

= 'D(�; z):

In the case that R is the unit disk D with the canonical coordinate �(z) = z; from the
mean value property of integrable holomorphic functions on D :

f(0) =
1

�

ZZ
D

f(z)dxdy;

it follows that ' � 1 is the extremal quadratic di�erential at the origin. By Lemma 2.2,
we see that

'D (�; z) =
(1� jzj2)2
(1� �z�)4

:

Therefore, we have a reproducing formula for A(D ) by (2.2):

 (z) =
1

�(1� jzj2)2
ZZ

D

 (�)

�
1� �z�

1� z��

�2

d�d�:

3. Estimate on annulus

In this section, we deduce an estimate of qA (w) for a round annulus A = A r = fw 2
C ; r < jwj < 1=rg for 0 < r < 1:

Theorem 3.1. For the annulus A = fw; r < jwj < 1=rg; we have the estimate

Q1(w) � qA (w)
2 � Q2(w); r < jwj < 1=r;

where

Q1(w) = max

(�
r

1� (rjwj)2
�2

;

�
r

jwj2 � r2

�2

;
1

4jwj2 log 1=r ;
r

2jwj(1� r2)
;

r

2jwj3(1� r2)

)
and Q2 is determined by the relations Q2(1=w)jwj�4 = Q2(w) and

Q2(w) = max

(
1

2jwj2(log 1
rjwj + rjwj � 1)

;
1

2jwj2(log r
jwj +

jwj
r
� 1)

)
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for jwj � 1: We also have Q2(w) � 9Q1(w) for w 2 A :

Before proceeding to the proof, we make several observations. Recall that the pullback
j� by the automorphism j(z) = 1=z of A is de�ned by j�P (w) = P (1=w)jwj�4 for a (1; 1)-
form P = P (w)jdwj2 on A : We denote by P1; P2; P3; P4 and P5 the �ve functions in the
above de�nition of Q1 in the order of appearance, which are all regarded as (1; 1)-forms
on A : Note that j�P1 = P2; j

�P3 = P3 and j�P4 = P5: In particular, we know that
Q1; Q2 and q

2
A
are all invariant under the pullback by the analytic involution j: Setting

m(t) = � log t + t� 1 for t > 0; we have the expression

Q2(w) =

8>>><>>>:
1=2jwj2m(jwj=r) if r < jwj � r0
1=2jwj2m(rjwj) if r0 � jwj � 1

1=2jwj2m(r=jwj) if 1 � jwj � 1=r0
1=2jwj2m(1=rjwj) if 1=r0 � jwj < 1=r;

where r0 = 2(log 1=r)=(1=r � r): Note that r0 = t= sinh t if we set r = e�t and that
r < r0 < 1: We also remark that jwj � r0 if and only if P3(w) � P5(w): Observe that
the function m(t) is convex and takes its minimum at t = 1: For �xed t0 2 (0; 1) and
t1 2 (1;+1); the following estimates will be useful later:

m(t) � m(t0)

log 1=t0
log

1

t
for 0 < t � t0;(3.1)

m(t) � (1� t)2

2
for t0 � t � 1;(3.2)

m(t) � (t� 1)2

2t1
for 1 � t � t1; and(3.3)

m(t) � m(t1)

t1
t for t1 � t:(3.4)

Taking w = 1; we have the following

Corollary 3.2. For A = fr < jwj < 1=rg; we have

max

(�
r

1� r2

�2

;
1

4 log 1=r

)
� qA (1)

2 � 1

2(� log r + r � 1)
:

Proof of Theorem 3.1. First, we show the inequality Q1 � q2
A
: Since D 1=r = fjzj <

1=rg � A ; the monotonicity of the metric q implies �D1=r = qD1=r � qA in A : Namely,

P
1=2
1 = r=(1� r2jwj2) � qA :We next consider the di�erential 'j(w)dw

2 = wjdw2 on A for
an integer j: By de�nition, we have �j'j(w)j=k'jk1 � qA (w)

2: An easy calculation shows
that k'�2k1 = 4� log 1=r and k'�1k1 = 2�(1=r� r): Thus we have P3 � q2

A
and P4 � q2

A
:

The other inequalities P2 � q2
A
and P5 � q2

A
follow from the invariance observed above.

Secondly, we show the inequality q2
A
� Q2: Let '(w)dw

2 be any element of A(A ): Take
w 2 A and �x it. By the symmetry, we may assume jwj � 1: Let s and t be any numbers
such that r < s < jwj < t < 1=r: Cauchy's integral formula then implies

w2'(w) =
1

2�i

Z
j�j=t

�2'(�)

� � w
d� � 1

2�i

Z
j�j=s

�2'(�)

� � w
d� =  0(w) +  1(w):
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We calculate

j 0(w)j � 1

2�

Z 2�

0

t2j'(tei�)j
t� jwj td�:

Integrating both sides of j 0(w)j(t� jwj)=t2 � R 2�
0
j'(tei�)jtd� with respect to t from jwj

to 1=r; we obtain

j 0(w)jm(rjwj) � 1

2�

Z 1=r

jwj

Z 2�

0

j'(tei�)jtd�dt = 1

2�

ZZ
jwj<j�j<1=r

j'(�)jd�d�:

Similarly, we have

j 1(w)jm(jwj=r) � 1

2�

ZZ
r<j�j<jwj

j'(�)jd�d�:

Combining these two inequalities, we see

jw2'(w)j � j 0(w)j+ j 1(w)j � 1

2�
max

�
1

m(rjwj);
1

m(jwj=r)
�
k'k1:

The last inequality yields jwj2qA (w)2 � 1
2
maxf1=m(rjwj); 1=m(jwj=r)g; which is nothing

but the desired one.
Finally, we show Q2(w) � 9Q1(w): We assume jwj � 1 as well. First we show

1=2jwj2m(rjwj) � 9Q1(w): When rjwj � 1=2; by (3.2) we have

1

2jwj2m(rjwj)P1(w) �
(1� r2jwj2)2

r2jwj2(1� rjwj)2 =
�
1 +

1

rjwj
�2

� 9:

When rjwj � 1=2; by (3.1) we have

1

2jwj2m(rjwj)P3(w) =
2 log 1=r

m(rjwj) �
2 log 2 � log 1=r
m(1=2) log 1=rjwj �

2 log 2

m(1=2)
= 7:17 � � � < 9:

So we have shown 1=2jwj2m(rjwj) � 9Q1(w) for r < jwj � 1:
Next we prove 1=2jwj2m(jwj=r) � 9Q1(w): When jwj=r � 2; by (3.4) we obtain

1

2jwj2m(jwj=r)P5(w) �
2jwj3(1� r2)

r
� 2

2jwj2m(2)jwj=r �
2

m(2)
= 6:51 � � � < 9:

On the other hand, when jwj=r � 2; by (3.3), we have

1

2jwj2m(jwj=r)P2(w) �
2(jwj2 � r2)2

r2jwj2(jwj=r� 1)2
= 2

�
1 +

r

jwj
�2

< 8 < 9:

Hence, we see 1=2jwj2m(jwj=r) � 9Q1(w) for r < jwj � 1: Now the proof is complete.

We have also an estimate on the punctured disk D � = D �f0g in a similar way as above.
Note that the function w'(w) is always holomorphic in the unit disk for each ' 2 A(D �):
Theorem 3.3. We have Q1(w) � qD� (w)2 � Q2(w) for w 2 D

� ; where

Q1(w) = max

�
1

(1� jwj2)2 ;
1

2jwj
�

and Q2(w) =
1

2jwj2(jwj�1 � 1� log jwj�1) :

In particular, qD� (w)2 = 1+o(1)
2jwj as w! 0: Furthermore, Q2(w) � 8Q1(w) holds for w 2 D � :

Corollary 3.4. The metric qR is incomplete at a puncture of R:

9



Proof. Suppose that � : D � ! R is an injective holomorphic map such that the induced
map �� : �1(D � ; �)! �1(R; �) is injective. Therefore, the puncture of D � corresponds to a
puncture of R: Let 0 : (0; 1=2] ! D

� be the curve de�ned by 0(t) = t: Then  = � Æ 0
is a proper map from (0; 1=2] into R:
The monotonicity of q (Lemma 1.1) implies ��qR � qD� : Thus we haveZ



qR =

Z
0

��qR �
Z
0

qD� (z)jdzj � const:

Z 1=2

0

t�1=2dt <1:

Remark. From the estimates in this section, we know that there is no natural order
relation between qR and �R: Actually, by Corollary 3.2, we see that

qA r (1)
2

�A r (1)
2
� (log 1=r)2

r � 1 + log 1=r
� log

1

r

as r! 0 + : On the other hand, since �D� (w) = 1=2jwj log(1=jwj); we see that
qD� (w)2

�D� (w)2
� jwj(log 1=jwj)2 = o(1)

as w! 0:

4. Estimate on a collar

As is well recognized, the presence of short geodesics has a signi�cant e�ect on the
geometry of the unit ball of the Banach space A(R) (see, for example, McMullen [11] or
Ohsawa [14]). In this section, we estimate the magnitude of qR on the collar of a short
geodesic in R by utilizing the analysis made in the preceeding section.
Let  be a simple closed geodesic of R with hyperbolic length `: We now take a holo-

morphic universal covering u : H ! R of R with the covering transformation g0(z) = e2`z
covering the geodesic ; where H deontes the upper half plane fz 2 C ; Im z > 0g: We
denote by G the covering transformation group of u and by G0 the subgroup of G gener-
ated by g0: Note that G is a torsion-free discrete subgroup of Aut (H ) = PSL(2;R): The
angular region H � = fz 2 H ; j arg(z=i)j < �g for 0 < � � �=2 is invariant under the action
of G0: The covering map E`(z) = exp(�i`�1 log(z=i)) maps H � onto the annulus A (�) =
fexp(���=`) < jwj < exp(��=`)g and corresponds to the quotient map H � ! H �=G0:
For abbreviation, we write r = exp(��2=2`) and A = A (�=2) = fr < jwj < 1=rg: The
induced covering f : A ! R determined by u = f Æ E` is called the annular covering of
R associated with :
If H � is precisely invariant under G0 in G; equivalently, if the map f is injective in

A (�); the image C(�) = f(A (�)) is called the collar of  with angle �: For the collar
C(�); the map � := f�1 : C(�)! A (�) is served as a local coordinate of R; which will
be called the canonical coordinate for : The collar lemma is an important tool for our
aim. The proof can be found, for example, in [1].

Lemma 4.1 (The collar lemma). A simple closed geodesic of length ` has a collar of

angle �; where � is determined by tan � sinh ` = 1:
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Since arctan(sinh(x)) is concave, the function arctan(sinh(x))=x is monotonically de-
creasing in x > 0: In particular, we have 1 > arctan(sinh(x))=x; and hence �=2 � � =
arctan(sinh(`)) < `; where � is the angle in the statement of Lemma 4.1. Therefore,
A (�) � A 1 := A (�1) = fe�r < jwj < 1=e�rg; where �1 = �=2 � `: We now have the
following weak version of the collar lemma.

Corollary 4.2. Let f : A = fr < jwj < 1=rg ! R be the annular covering of R
associated with a simple closed geodesic  with length ` < �=2; where r = exp(��2=2`):
Then f is injective in A 1 = fe�r < jwj < 1=e�rg:
Set A 2 = A (�2) = fe2�r < jwj < 1=e2�rg for a simple closed geodesic  with length

` < �=4; where �2 = �=2�2`: The next result will be used to control quadratic di�erentials
on the collar C(�2):

Lemma 4.3. Let  be a simple closed geodesic with length ` � �=8 = 0:3926 : : : in R:
Then

qA 1 (w)
2 � 3

16�jwj2 (w 2 A 2):

Proof. By the symmetry, we may assume e2�r � jwj � 1; where r = exp(��2=2`): Under
the notation in Theorem 3.1, we obtain 2jwj2qA 1 (w)2 � 2jwj2Q2(w) = 1=minfm(e�rjwj);
m(jwj=e�r)g: Noting e�rjwj � e�r < 1 and 1 < e� � jwj=e�r; we have

m(e�rjwj) � m(e�r) >
�2

2`
� � � 1 � �2

2`
� (� + 1)�

8`
=
�(3� � 1)

8`
>
�2

3`
� 8�

3
(4.1)

and m(jwj=e�r) � m(e�) = 18:999 � � � > 8�=3: Hence we see jwj2qA 1 (w)2 > 3=16�jwj2:
We also need a \puncture version" of the collar lemma, which is a consequence of the

Shimizu-Leutbecher lemma (see, for example, [8, II.C.5]). Let  be a simple short loop
around a puncture in R: We take a holomorphic universal covering u : D ! R such that
the covering transformation group G of u contains the parabolic element g0(z) = z + 1
which covers : Note that the domain H (k) = fz 2 H ; Im z > kg is invariant under g0 for
k � 0: Set D �(k) = E0(H (k)) = f0 < jwj < e�2�kg; where E0(z) = exp(2�iz): Moreover
we set D �1 = D �(1) and D �2 = D �(

p
2): We denote by f : D � = D �(0) ! R the annular

covering associated with ; namely, u = f Æ E0:

Lemma 4.4. Let  be a simple loop corresponding to a puncture of R: Then the annular

covering f : D
� ! R is injective in D

�
1 :

The biholomorphic map � = (f)
�1 : f(D �1)! D �1 will be called the canonical coordi-

nate of R around the puncture corresponding to :
The next lemma is a variant of \thick-thin decomposition".

Lemma 4.5. Let "0 = 1
4
log 2 = 0:17328 : : : : If a point p in R has injectivity radius

�R(p) < "0; then p is contained in either f(A 2) for a simple closed geodesic  of length

less than �=8 or f(D
�
2) for a simple loop  corresponding to a puncture.

Proof. Let 1 be a non-contractible closed curve passing through p which minimizes the
hyperbolic length, i.e.,

R
1
�R = 2�R(p): It is easily veri�ed that 1 is simple. First we

11



consider the case that 1 has a freely homotopic simple closed geodesic  of length `: By
assumption, we note that ` � 2�R(p) < 2"0 < �=8: The hyperbolic distance d between itei�

and itei�+2`; where t > 0; satis�es tanh d = 1=
q
1 + cos2 �= sinh2 `: If �=2�2` � j�j � �=2

we have cos � � sin(2`): So, we have cos �= sinh ` � sin(2`)= sinh ` < 2`=` = 2: Thus
d > arctanh(1=

p
5) > arctanh(1=3) = 2"0; which means that if a closed curve passing

through a point in the outside of f(A 2) = f(A (�=2� 2`)) is freely homotopic to ; then
its length is necessarily at least 2"0: Hence p 2 f(A 2) in this case.

Since the hyperbolic distance d between ik and ik + 1; where 0 < k � p
2 satis�es d =

arctanh(1=
p
1 + 4k2) � arctanh(1=3) = 2"0; the case that 1 corresponds to a puncture

can be handled in the same manner as above.

As an application of our metric qR; now we are ready to prove the following theorem,
which is a more concrete form of Matsuzaki's result. Note that we can read more detailed
information on the relationship between A(R) and B(R) from our proof presented below.
Recall also the fact that 1=2��(R) � �(R) from (1.1).

Theorem 4.6.

�(R) � max

�
6

��(R)
; 34

�
:

Proof. By Proposition 1.9, we have only to show that (qR=�R)
2 � maxf6=��(R); 34g:

Consider the function F = qR=�R on R: Let p 2 R be arbitrary. If �R(p) � "0 =
arctanh(1=3)=2; by Proposition 1.2 and Lemma 1.4, we have F (p) � (hR=�R)(p) �
coth �R(p) � coth "0 = 3 + 2

p
2: Note here that (3 + 2

p
2)2 = 33:970 � � � < 34:

Otherwise, by virtue of Lemma 4.5, we have the following two cases:
� Case 1: p 2 f(A 2) for a simple closed geodesic  with length ` < �=8:
Let w be a point in A 2 with f(w) = p: We may assume jwj � 1 and write log jwj =

���=`; where 0 � � � �=2 � 2`: Note that (f)
��R(w) = �A (w) = `=2�jwj cos �: By

Theorem 3.1, we obtain

F (p)2 � qA 1 (w)
2

�A (w)2
� 2�2

`2
max

�
cos2 �

m(e�rjwj) ;
cos2 �

m(jwj=e�r)
�
:

First, we see cos2 �=m(e�rjwj) � 1=m(e�r) < 3`=�2 from (4.1). Second, by (3.4),
m(jwj=e�r) � m(e�)jwj=e2�r holds, and hence

cos2 �

m(jwj=e�r) �
e2�r

m(e�)
e��=` cos2 �:

Since the function e�x=2` cos x is monotonically increasing in 0 � x � �=2 � 2`; we have
cos2 �=m(jwj=e�r) � sin2(2`)=m(e�) � 4`2=m(e�): Hence, we have

F (p)2 � 2�2

`2
max

�
3`

�2
;

4`2

m(e�)

�
= max

�
6

`
;
8�2

m(e�)

�
:

We note here 8�2=m(e�) = 4:1558 : : : :
� Case 2: p 2 f(D �2) for a simple closed curve  around a puncture.
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Let w be a point in D �2 with f(w) = p: Note that 0 < jwj < e�2
p
2� and that f ��R(w) =

�D� (w) = 1=2jwj log(1=jwj): We now use Theorem 3.3 to show

F (p)2 � qD�

1
(w)2

�D� (w)2
= (2jwj log jwj)2e4�qD� (e2�w) � (2jwj log jwj)2

2jwj2m(1=e2�jwj) =
2(log jwj)2
m(1=e2�jwj) :

The inequality m(1=e2�jwj) � e�2
p
2�m(e2(

p
2�1)�)=jwj follows from (3.4), and then

F (p)2 � 2e2
p
2�jwj(log jwj)2

m(e2(
p
2�1)�))

:

We can easily check that the function x(log x)2 is monotonically increasing in 0 < x �
e�2

p
2�(< e�2); so we have

F (p)2 � 16�2

m(e2(
p
2�1)�)

= 15:957 : : : :

Summing up these estimates, we obtain the desired inequality.

We next concentrate on the lower estimate of qR near : To this end, we use the Peters-
son series for : An estimate similar to ours was given by Wolpert [21]. Another approach
appealing to Ahlfors' trick can be found in [10]. We provide an estimate independently
for the sake of explicitness.
We denote by A(H ; G) the Banach space of those holomorphic automorphic 2-forms

' = '(z)dz2 on H for a torsion-free Fuchsian group G which are integrable on H =G;
namely, '(g(z))g0(z)2 = '(z) for all g 2 G and k'kA(H ;G) =

RR
!
j'(z)jdxdy < +1; where

! is a fundamental domain for G with Area(@!) = 0: Note that A(H ; G) is naturally
isomorphic to the Banach space A(H =G) via the pullback by the canonical projection
H ! H =G:
Let  be a simple closed curve of length ` on R: Choose a Fuchsian group G uniformizing

R in such a way that the element g0(z) = e2`z in G covers : Under the above notation
and normalization, the Petersson series ' 2 A(R) for  is de�ned by

f �' = �G0nG'0;

where '0 = dz2=z2 and �G0nG denotes the relative Poincar�e series operator for G0nG (see
[6] for details), namely, for ' 2 A(H ; G0)

�G0nG' =
X

g2G0nG
(' Æ g)(g0)2;

where the summation is taken over all representatives of right cosets of G0 in G: Note
that k�G0nG'kA(H ;G) � k'kA(H ;G0 ): Since k'0kA(H ;G0 ) = 2�`; we have k'kA(R) � 2�`:
Let �0 be the (1; 1)-form j'0j and set � = �G0nG�0 =

P
g2G0nG g

��0 = �0 + �1; where

g��0 = (�0 Æ g)jg0j2: Let ! be a fundamental domain for G such that H �1 \W � !; where
W = fz 2 H ; e�` < jzj < e`g: Noting RR

!
g��0 =

RR
g(!)

�0 and (g0)
��0 = �0; we calculateRR

!
� =

RR
W
�0 = 2�`: On the other hand, we have

RR
!
�0 �

RR
H�1

\W �0 = 4�1`: Hence,RR
!
�1 � 2(� � 2�1)` = 4`2: Set  0 = �(`=�)2dw2=w2; then we directly see E�

` 0 = '0:
If we write f �' =  0 +  1; then we have k 1kA(A 1 ) �

RR
H�1

\W �1 � 4`2:
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Now we assume that ` is suÆciently small, for example, say ` � �=8: By Lemma 4.3,
we obtain

j 1(w)j � qA 1 (w)
2

�
k 1kA(A 1 ) �

3

16�2jwj24`
2 =

3`2

4�2jwj2
for w 2 A 2 : Thus,

jf �'(w)j � j 0(w)j � j 1(w)j � `2

4�2jwj2
for w 2 A 2 : Recalling the fact k'kA(R) � 2�`; we obtain qR;� (w)

2 = f � qR(w)
2 �

�jf �'(w)j=k'kA(R) � `=8�2jwj2: Thus we have shown the following estimate, which
may be served for the future use.

Proposition 4.7. For a simple closed geodesic  with length ` � �=8; we have f � qR(w)
2 �

`=8�2jwj2 for w 2 A 2 :

5. A characterization of boundedness of geometry

We can now obtain the following estimate, from which we can deduce Theorem 1.8.

Theorem 5.1. Let R be a non-exceptional hyperbolic Riemann surface and denote by

H(R) the supremum of the function hR=qR on R: Then, there exists an absolute constant

C such that
1

�(R)
� CH(R)2:

On the other hand, if �(R) > 0 we have

H(R) � K(�(R)) < +1;

where K(�(R)) is a positive constant depending only on �(R):

Proof. First, we prove the �rst inequality. Suppose that R has a puncture and let 
be a simple loop around the puncture. By Lemma 4.4 and Theorem 3.3, we then have
f � qR(w)

2 � qD�

1
(w)2 � 1=jwj as w! 0: On the other hand, from Lemmas 1.3 and 1.5, we

can deduce f �hR(w) � hD� (w) � 1=jwj as w! 0 Thus we have (qR=hR)(f(w))
2 = O(jwj)

as w ! 0; which implies H(R) = +1: Hence, we conclude that R has no punctures if
H(R) < +1:
Next, let  be a simple closed geodesic with length ` � �=8: Then, by Corollaries

4.2 and 3.2, f � qR(1) � qA 1 (1) � 1=2m(e�r): Using (4.1), we have m(e�r) � �2=3`:
Moreover, we get f �hR(1) � hA (1) � 1=4(1 � r) � 1=4(1� e�4�); and then f �hR(1)

2 �
1=16(1 � e�4�)2 > 3=16�: So, now we can see (hR=qR)(f(1))

2 � �=8`: Hence, we have
1=�(R) � maxf8H(R)2=�; 8=�g: Noting that hR=qR � 1 always holds by Proposition 1.2,
we conclude that 1=�(R) � CH(R)2 with C = 8=� = 2:5464 : : : :
Now we show the latter part. Suppose that, for a positive number �; there are no

constants K(�) which satisfy the property in the statement above. Then there exist a
sequence of Riemann surfaces Rn with �(Rn) � � and a sequence of points pn 2 Rn (n =
1; 2; : : : ) such that

hRn

qRn

(pn)! +1
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as n!1: Let Gn be a Fuchsian group acting on D such that D =Gn = Rn and un(0) = pn;
where un : D ! D =G = R is the natural projection. Now we can use the following result
due to Chabauty [2] (see also [5]).

Lemma 5.2. Let Gn be a sequence of Fuchsian groups acting on D : If there exists a

neighborhood V of the identity element id in the Lie group Aut D �= PSL(2;R) such that

V \Gn = fidg for all n: Then there exists a subsequence Gnj which converges geometrically

to a discrete subgroup G of Aut D :

Here we say that Gn geometrically converges to G if the following two conditions are
satis�ed:

1. For each  2 G there exists a sequence of elements n 2 Gn such that n !  as
n!1:

2. If n 2 Gn converges to an element  of Aut D ; then  2 G:
We return to our situation. By this lemma, we may assume that Gn geometrically

converges to some Fuchsian group G: Note also that G is torsion-free by assumption.
Now let R = D =G and p = u(0); where u : D ! R is the natural projection. As is
easily seen, �(R) � �; in particular, R is non-exceptional. Therefore, by Lemma 1.1, we
can �nd a ' 2 A(R) which does not vanish at the point p: Then, by the surjectivity of
the Poincar�e series operator (see, for example, [6]), there exists a  2 A(D ) such that
u�' = �G : We may assume that k kA(D) = �: Set ~'n = �Gn and choose 'n 2 A(Rn)
so that ~'n = u�n'n for n = 1; 2; : : : : Then, by [11, Proposition A.2.4], ~'n tend to ~'
uniformly on each compact set in D as n!1: Since, ~'(0) 6= 0; we have j ~'n(0)j � c0 for
suÆciently large n; where c0 is a positive constant. Noting k'nkA(Rn) � k kA(D) = �; we
obtain u�nqRn(0)

2 � j ~'n(0)j � c0 for suÆciently large n: On the other hand, by Lemma 1.5,
u�nhRn(0) � u�n�Rn(0) coth(�)=4 = coth(�)=4: Thus we have arrived at the contradiction
(hRn=qRn)(pn)

2 � coth2(�)=16c0 for n large enough.

Remark. As Proposition 4.7 suggests, we may state the conjecture: H(R)2 �
Cmaxf�(R)�1; 1g for some absolute constant C: The only one obstacle to employ the
same method as above is the presence of the case that Rn tends to the exceptional Rie-
mann surface, say, C � f0; 1g: This might be overcome by a re�nement of estimate of qR;
when Proposition 4.7 would be of use.

6. A lower estimate of qR in terms of the logarithmic capacity

It seems quite hard to control the metric qR from below in general. In this section, we
propose a lower estimate of qR by using the Poincar�e metric �R and the capacity metric
cR in the case that R =2 OG; i.e., R carries the Green function. Throughout this section,
we always assume that R =2 OG:
We denote by cR the capacity metric (or the logarithmic capacity) of R; precisely,

letting � be a local coordinate of R; the metric cR is de�ned by the relation

GR(p; p0) = � log j�(p)� �(p0)j � log cR;�(z0) + o(1)

as p ! p0; where z0 = �(p0) and GR(p; p0) is the Green function of R with pole at p0:
Classically, � log cR is called the Robin constant.
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Our result is as follows.

Theorem 6.1. For R =2 OG; the inequality q2R � �RcR holds.

Proof. Fix p0 2 R and take a holomorphic universal covering u : D ! R from the unit
disk D with covering transformation group G so that u(0) = p0: Note that G is a Fuchsian
group of convergence type. In particular, the Blaschke product

B(z) =
Y

g2G�f1g

jg(0)j
�g(0)

z � g(0)

1� g(0)z

converges in D : Also note that u�cR(0) = B(0) (see [17]). Set ' = �GB: Then we have
'(0) = B(0) = u�cR(0) = u��R(0)u�cR(0): Since k'kA(D ;G) � kBkA(D) � �; we obtain
u�qR(0)2 � j'(0)j = u��R(0)u�cR(0); which means q2R � �RcR at p0:

7. Relationship with the kernel function for A(R)

We explain the magnitude of qR can be described approximately by the usual kernel
function for A(R): First, we recall necessary de�nitions. Let (';  )R be the natural pairing
between A(R) and B(R); namely,

(';  )R =
3

�

ZZ
R

��2R ' =
3

�

ZZ
R

�R(�)
�2'(�) (�)d�d�

for ' 2 A(R) and  2 B(R): (The extra factor 3=� is only for convention.)
Set KD (�; z) = (1 � �z�)�4 for �; z 2 D : Let G be a torsion-free Fuchsian group acting

on the unit disk D with D =G = R: Then we set

F (�; z) =
X
g2G

KD (g(�); z)g
0(�)2

for z and � 2 D : We denote by u the canonical projection D ! D =G = R and de�ne the

kernel function KR(r; p) as a section of the line bundle K
2
R � K
2

R over R � R which is
determined by

(u� u)�KR(�; z) = F (�; z)

for �; z 2 D : In other words, KR(u(�); u(z))u
0(�)2u0(z)2 = F (�; z) holds locally.

Proposition 7.1 ([6] or [3]). The kernel function KR(r; p) is holomorphic in r and anti-

holomorphic in p and satis�es the following properties.

1. KR(r; p) = KR(p; r);
2. kKR(�; p)kA(R) =

RR
R
jKR(�; p)jd�d� � ��R(p)

2; where � = � + i�;
3. KR(�; p) = KR(�; p)d�

2 2 B(R) for each �xed p 2 R; and
4. '(p) = (';KR(�; p))R for each ' 2 A(R):
We set �R(p) = kKR(�; p)kB(R) = supr2R �R(r)

�2jKR(r; p)j: Then, from the above prop-
erties, it can be deduced that �R = �R(z)jdzj2 is a (1; 1)-form on R and the next result
follows.

Theorem 7.2. The inequality �R � q2R � 3�R is valid on R for an arbitrary non-

exceptional hyperbolic Riemann surface R:
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Proof. By property 2 above, we immediately have �R(p) � q2R(p): On the other hand, by
property 4, we have j'(p)j � 3

�
�R(p)k'kA(R): This implies qR(p)

2 � 3�R(p):

Setting M(R) = supp2R(�R=�
2
R)(p); we have the following

Corollary 7.3.

M(R) � ��(R) � 3M(R):
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