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1. Introduction

The study of the different forms of Hardy inequalities has gathered some
considerable interest in the past few decades. These inequalities have natural
applications for instance in the theory of partial differential equations and in
spectral theory, but they also lead to many interesting questions and perhaps
surprising connections between different areas of mathematical analysis. For
instance, Hardy inequalities are closely related to the quasiadditivity properties
of capacities, see e.g. the work of Hiroaki Aikawa in [1].

In a domain (an open and connected set) Ω ⊂ Rn, the (p, β)-Hardy inequality,
for 1 < p <∞ and β ∈ R, reads as

(1)

∫
Ω

|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω

|∇u(x)|p dΩ(x)β dx.

Here dΩ(x) = dist(x, ∂Ω) denotes the distance from a point x ∈ Ω to the
boundary ∂Ω, and u ∈ C∞0 (Ω), i.e., u is a smooth test-function with a compact
support in Ω. We say that Ω ⊂ Rn admits the (p, β)-Hardy inequality if there
exists a constant C > 0 so that (1) holds for all u ∈ C∞0 (Ω) with this constant.
In the unweighted case β = 0 we simply speak of the p-Hardy inequality.

In this talk, I will concentrate on the close connection between the validity
of these Hardy inequalities and their variants in a domain and the size and
geometry of the complement of that domain. I will first introduce different ways
how to measure the size of the complement, for instance in terms of capacities or
Hausdorff type contents, and then present some recent developments concerning
sufficient and necessary conditions for different types of Hardy inequalities in
terms of thickness and other conditions.

2. Thickness conditions

Let us begin with a definition of fatness given in terms of a capacity density
condition:

Definition 2.1. (i) Let Ω ⊂ Rn be a domain and let E ⊂ Ω be a compact
subset. Then the (variational) p-capacity of E (relative to Ω) is

capp(E,Ω) = inf

{∫
Ω

|∇u|p dx : u ∈ C∞0 (Ω), u ≥ 1 on E

}
.
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(ii) A closed set E ⊂ Rn is said to be uniformly p-fat if there exists a constant
C > 0 such that

capp
(
E ∩B(x, r), B(x, 2r)

)
≥ C capp

(
B(x, r), B(x, 2r)

)
for every x ∈ E and all r > 0.

For the basic properties of the p-capacity we refer to [8]; for instance, it is well-
known that capp(B(x, r), B(x, 2r)) = C(n, p)rn−p for each ball B(x, r) ⊂ Rn.

It is easy to see (with the help of Hölder’s inequality) that if a set E ⊂ Rn

is uniformly p-fat and p′ > p, then E is also uniformly p′-fat. In the other
direction we have the following highly non-trivial ‘self-improvement’ result due
to John Lewis [20, Thm. 1]:

Theorem 2.2. Let 1 < p < ∞ and assume that E ⊂ Rn is uniformly p-fat.
Then there exists 1 < q < p such that E is also uniformly q-fat.

A more geometric interpretation of fatness can be achieved by means of
Hausdorff contents.

Definition 2.3. The λ-Hausdorff content of a set E ⊂ Rn is

Hλ
∞(E) = inf

{ ∞∑
i=1

rλi : E ⊂
∞⋃
i=1

B(zi, ri)

}
.

The Hausdorff dimension of E ⊂ Rn is the number

dimH(E) = inf
{
λ > 0 : Hλ

∞(E) = 0
}
.

We have the following relation between uniform fatness and ‘thickness’ in
terms of Hausdorff contents:

Proposition 2.4. Let 1 < p < ∞. Then a closed set E ⊂ Rn is uniformly
p-fat if and only if there exists some exponent λ > n− p and a constant C > 0
so that

Hλ
∞
(
E ∩B(w, r)

)
≥ Crλ for every w ∈ E and all r > 0.

For the idea of the proof, see e.g. the discussion in [11]. It is worth a mention
that Theorem 2.2 is needed in the proof of the necessity part of Proposition 2.4.

On the other hand, if we are only interested in domains and their comple-
ments, we can use the following equivalence from [15]:

Theorem 2.5. Let 1 < p < ∞ and let Ω ⊂ Rn be a domain. Then the
complement Ωc is uniformly p-fat if and only if the following ‘inner’ Hausdorff
content density condition holds for the boundary ∂Ω with an exponent λ > n−p:

(2) Hλ
∞
(
B(x, 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

Note however that the validity of condition (2) with λ > n − p does not
guarantee the uniform p-fatness of the boundary ∂Ω (!); an example of this is
given by domains with outer cusps.

A similar equivalence as in Proposition 2.4 can be obtained also with the
help of Minkowski contents:
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Definition 2.6. When E ⊂ Rn and r > 0, we denote

Mλ
r (E) = inf

{
Nrλ : E ⊂

N⋃
i=1

B(zi, r), zi ∈ E
}
.

Then the λ-Minkowski content of E ⊂ Rn is

Mλ
∞(E) = inf

r>0
Mλ

r (E).

Lemma 2.7. Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ ≤ n
and C0 > 0 such that

Mλ
∞
(
B(w, r) ∩ E

)
≥ C0 r

λ

for every w ∈ E and all r > 0. Then, for every 0 < λ′ < λ, there exists a
constant C = C(C0, λ, λ

′, n) > 0 such that

Hλ′

∞
(
B(w, r) ∩ E

)
≥ C rλ

′

for every w ∈ E and all r > 0.

As a corollary from Proposition 2.4 and Lemma 2.7 we obtain

Corollary 2.8. Let 1 < p <∞. Then a closed set E ⊂ Rn is uniformly p-fat if
and only if there exists some exponent λ > n− p and a constant C > 0 so that
the Minkowski thickness condition (2.7) holds for every w ∈ E and all r > 0.

3. Hardy inequalities

3.1. One-dimensional inequalities. The origins of Hardy inequalities trace
back to the early 20th century. In the famous 1925 paper [5], G.H. Hardy proved
that the inequality

(3)

∫ ∞
0

(
1

x

∫ x

0

f(t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)p dx,

where 1 < p < ∞, holds whenever f ≥ 0 is measurable and, moreover, that
the constant on the right-hand side is the best possible. An excellent account
on the interesting — and not that straigt-forward — progress leading to the
discovery of inequality (3) can be found in [14]. Writing u(x) =

∫ x
0
f(t) dt we

see that equation (3) corresponds exactly to the unweighted p-Hardy inequality
(1) for the domain (0,∞) ⊂ R.

The proof of (3) is rather simple, the only tools needed are integration by
parts and Hölder’s inequality. Exactly the same method can be applied in order
to prove one-dimensional weighted Hardy inequalities (cf. [6, §330]), which can
be formulated as follows (essentially [13, Thm. 5.2]):

Theorem 3.1. Let 1 < p < ∞ and β 6= p− 1. If u : (0,∞) → R is absolutely
continuous with limx→0 u(x) = 0 = limx→∞ u(x), then u satisfies the inequality

(4)

∫ ∞
0

|u(x)|p xβ−p dx ≤
(

p

|p− 1− β|

)p ∫ ∞
0

|u′(x)|p xβ dx,

where the constant on the right-hand side is the best possible.
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3.2. Higher dimensional inequalities. Hardy inequalities were introduced
to higher dimensional Euclidean spaces Rn, n ≥ 2, by J. Nečas, who also proved
the following basic theorem in the 1960’s:

Theorem 3.2 (Nečas [21]). Let Ω ⊂ Rn be a bounded Lipschitz domain. Then
Ω admits the (p, β)-Hardy inequality whenever 1 < p <∞ and β < p− 1.

Recall that a domain Ω is Lipschitz if the boundary can be represented locally
as graphs of Lipschitz-continuous functions. The proof of Theorem 3.2 is based
on this fact and the analog of the one-dimensional inequality (4) for bounded
intervals, in which it only holds for β < p − 1. However, it is nowadays well-
understood that the ‘smoothness’ of the boundary is not that important, but it
is indeed the ‘thickness’ or ‘fatness’ of the complement (or the boundary) that
arises as a natural sufficient condition for Hardy inequalities. The following
theorem, dating to the late 1980’s, has been of fundamental importance.

Theorem 3.3 (Ancona [2] (p = 2), Lewis [20], Wannebo [22]). Let 1 < p <∞
and assume that the complement of a domain Ω ⊂ Rn is uniformly p-fat. Then
Ω admits the p-Hardy inequality

Note that the exact formulations in [2], [20], and [22] are a bit different to
that of Theorem 3.3, but the content is exactly the same. Wannebo actually
showed even more, namely that the uniform p-fatness of Ωc suffices for (p, β)-
Hardy inequalities for all β ≤ β0, where β0 > 0 is some small (positive) number.
However, no explicit expression for β0 was given.

On the other hand, Lewis showed in [20] that the converse to Theorem 3.3
holds in Rn only in the case p = n, that is, the n-Hardy inequality implies
uniform n-fatness for the complement, but the p-Hardy inequality may actually
hold for some 1 < p < n when the complement is thin enough.

Recently, I was able to establish the following result, which includes both
Theorem 3.2 and Theorem 3.3 as special cases, and gives a sharp bound for β
for which the (p, β)-Hardy inequality holds under the inner boundary density
condition (2).

Theorem 3.4. Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that (2)
holds in Ω with an exponent 0 ≤ λ ≤ n − 1. Then Ω admits the (p, β)-Hardy
inequality for all β < p− n+ λ.

Indeed, it is easy to see that a bounded Lipschitz domain Ω satisfies (2)
with λ = n − 1, and so Theorem 3.4 gives Hardy inequalities for all β <
p − n + (n − 1) = p − 1; and since uniform p-fatness of Ωc implies (2) with
some λ > n−p, the value β = 0 is admissible in the Theorem for domains with
uniformly p-fat complements.

The requirement λ ≤ n−1 (and thus β < p−1) is essential in Theorem 3.4, as
examples from my earlier work [11] with Pekka Koskela show that the conclusion
of Theorem 3.4 need not hold for β ≥ p− 1 even if (2) holds with an exponent
λ > n− 1.
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3.3. Pointwise Hardy inequalities. A new chapter in the development of
Hardy inequalities was opened in the late 1990’s, when P. Haj lasz [4] and
J. Kinnunen and O. Martio [9] noticed, independently, that the uniform p-
fatness of Ωc implies the following pointwise variant of the p-Hardy inequality.

Proposition 3.5 (Haj lasz, Kinnunen-Martio). Let 1 < p < ∞ and assume
that the complement of a domain Ω ⊂ Rn is uniformly p-fat. Then there exist
a constant C > 0 such that the inequality

(5) |u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)
)1/p

holds for all u ∈ C∞0 (Ω) at every x ∈ Ω.

If the conclusion of Theorem 3.5 holds in a domain Ω we say that Ω admits
the pointwise p-Hardy inequality. In (5) MR is the usual restricted Hardy-
Littlewood maximal operator, defined by

MRf(x) = sup
0<r≤R

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy

for f ∈ L1
loc(Rn).

It is very easy to show, using the maximal theorem, that if p < q and the
pointwise p-Hardy inequality (5) holds for a function u ∈ C∞0 (Ω) at every x ∈ Ω
with a constant C1 > 0, then u satisfies the usual q-Hardy inequality, with a
constant C = C(C1, p, q, n) > 0. However, it is a priori not at all obvious, if
the pointwise p-Hardy inequality (5) suffices for the usual p-Hardy inequality
as well. We will return to this question in Section 4.

On the other hand, there are many domains which admit the p-Hardy in-
equality, but where the corresponding pointwise inequality fails. For example,
the punctured unit ball B(0, 1) \ {0} ⊂ Rn, admits the pointwise p-Hardy in-
equality only in the trivial case p > n, but the usual p-Hardy inequality holds
in this domain also when 1 < p < n; see [11] for more details. Notice that this
same domain gives an example of the fact that uniform p-fatness of the com-
plement is not necessary for a domain to admit the p-Hardy inequality, as the
complement of B(0, 1) \ {0} ⊂ Rn is not uniformly p-fat for any p ≤ n.

In the weighted case, a pointwise analogue of the (p, β)-Hardy inequality
was introduced in the paper [11] with P. Koskela: We say that Ω admits the
pointwise (p, β)-Hardy inequality, if there exist C > 0 and 1 < q < p such that

(6) |u(x)| ≤ CdΩ(x)1−β
p

(
M2dΩ(x)

(
|∇u|qdΩ

β
p
q
)
(x)
)1/q

for all x ∈ Ω

whenever u ∈ C∞0 (Ω); note the small (but slightly inconvenient) difference be-
tween inequality (6) in the case β = 0 and the pointwise p-Hardy inequality (5).
Using the maximal theorem and the fact that we have 1 < q < p in (6) it is
easy to see that inequality (6) implies the usual (p, β)-Hardy inequality (1).

The first general sufficient condition for weighted pointwise Hardy inequalities
was given in [11] in the following form:
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Theorem 3.6. Let 1 < p <∞ and let Ω ⊂ Rn be a domain. Assume that there
exist 0 ≤ λ ≤ n, c ≥ 1, and C > 0 so that

(7) Hλ
∞
(
vx(c)–∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

Then Ω admits the pointwise (p, β)-Hardy inequality whenever β < p− n+ λ.

Here vx(c)–∂Ω, the c-visible boundary near x ∈ Ω, consists of the points
w ∈ ∂Ω which are accessible from x by a c-John curve γ in Ω, i.e. a curve which,
the end-point w ∈ ∂Ω excluded, stays relatively far away from the boundary.
Besides Lipschitz-domains, where (7) holds with λ = n − 1, this condition is
satisfied for instance in snowflake-type domains in Rn with n−1 < λ < n. Thus,
contrary to Theorem 3.4, values β > p − 1 can be reached in Theorem 3.6 —
and thus also in the corresponding usual (p, β)-Hardy inequalities — provided
that λ > n− 1.

For β ≤ 0 the accessibility part of the assumption in Theorem 3.6 is actually
not needed, as the following result from [19] shows:

Proposition 3.7. Let 1 < p < ∞, let Ω ⊂ Rn be a domain, and assume that
the inner boundary density condition (2) holds with an exponent 0 ≤ λ ≤ n.
Then, if β ≤ 0 and β < p−n+λ, Ω admits the pointwise (p, β)-Hardy inequality.

Proposition 3.7 is actually used, together with a ‘shift’-property of usual
Hardy inequalities (cf. [16]), in the proof of Theorem 3.4.

Contrary to Theorem 3.6 and Proposition 3.7, Theorem 3.4 only treats usual
Hardy inequalities, not pointwise. Hence there appears a gap concerning our
knowledge on pointwise Hardy inequalities: For 0 < β < p− 1 we do not know
if the inner boundary density condition (2) with an exponent λ > n − p + β
suffices for Ω to admit the pointwise (p, β)-Hardy inequality; for β ≤ 0 this is
sufficient but for β ≥ p− 1 it is not.

4. Pointwise Hardy inequalities and uniformly fat sets

In the recent work [10] with Riikka Korte and Heli Tuominen we prove the
following result; related (but weaker) results can be found in [15].

Theorem 4.1. Let 1 ≤ p < ∞. A domain Ω ⊂ Rn admits the pointwise
p-Hardy inequality (5) if and only if the complement Ωc is uniformly p-fat.

This equivalence between uniform fatness and pointwise Hardy inequalities
has some interesting consequences. For instance, by Theorem 2.2, uniform
p-fatness enjoys a self-improvement property. Now, it is immediate from The-
orem 4.1 that pointwise p-Hardy inequalities, for 1 < p < ∞, possess this
same property. In particular, we obtain an answer to the question that was
mentioned in Section 3.3:

Corollary 4.2. Let 1 < p < ∞. If a domain Ω ⊂ Rn admits the pointwise
p-Hardy inequality, then Ω admits the integral p-Hardy inequality as well.

There are (at least) two distinct ways to prove this. Either one uses the fact
that the pointwise p-Hardy inequality implies a pointwise q-Hardy inequality
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for some q < p, and then applies the maximal theorem to obtain the usual p-
Hardy, or then one can deduce from the pointwise p-Hardy inequality that Ωc is
uniformly p-fat, and then use a clever integration trick due to A. Wannebo [22]
which yields the usual p-Hardy inequality. This latter approach uses only ‘ele-
mentary’ tools, whereas the (known) proofs for the self-improvement use rather
sophisticated tools from non-linear potential theory.

To be a bit more precise, we prove in [10] that the following equivalences
hold:

Theorem 4.3. Let 1 ≤ p < ∞. Then, for a domain Ω ( Rn, the following
assertions are quantitatively equivalent:

(a) The complement Ωc is uniformly p-fat.
(b) For all B = B(w, r), with w ∈ Ωc and r > 0, and for every u ∈ C∞0 (Ω)∫

B

|u|p dx ≤ Crp
∫
B

|∇u|p dx.

(c) For all x ∈ Ω and every u ∈ C∞0 (Ω)

|uBx|p ≤ CdΩ(x)p
∫
Bx

|∇u|p dx,

where Bx = B(x, dΩ(x)).
(d) The domain Ω admits the pointwise p-Hardy inequality (5).

Here we use the notation

uB =

∫
B

u dx = |B|−1

∫
B

u dx.

Part (a) =⇒ (b) of the proof of Theorem 4.3 follows from a Lemma due to
V.G. Maz’ja:

Lemma 4.4. There is a constant C > 0 such that for each u ∈ C∞0 (Ω) and for
all balls B ⊂ Rn we have

(8)

∫
B

|u|p dx ≤ C

capp(
1
2
B ∩ {u = 0}, B)

∫
B

|∇u|p dx.

Parts (b) =⇒ (c) and (c) =⇒ (d) are then simple consequences of basic
inequalities from Sobolev theory.

The proof of (d) =⇒ (a), which is the only previously unknown part of
Theorem 4.3 in the Euclidean case, is also based on the use of ‘elementary’
tools; in particular, the Poincaré inequality and a basic ‘5r’-covering lemma are
needed.

5. A word on metric spaces

Analysis in metric spaces is a rapidly developing area with plenty of appli-
cations in various branches of mathematics. The basic context here is a metric
measure space X = (X, d, µ), where µ is a Borel regular outer measure satisfy-
ing 0 < µ(B) <∞ for all balls B ⊂ X.
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It is usually assumed that (i) the measure µ is doubling, i.e., there exists a
constant Cd ≥ 1 such that

µ(2B) ≤ Cd µ(B)

for all balls B of X; and that (ii) the space X supports a (weak) (1, p)-Poincaré
inequality. This means that there exist constants Cp > 0 and τ ≥ 1 such that
for all balls B ⊂ X, all continuous functions u, and for all upper gradients gu
of u, we have the inequality

(9)

∫
B

|u− uB| dµ ≤ Cpr
(∫

τB

gpu dµ
)1/p

.

Here a Borel function g ≥ 0 is said to be an upper gradient of a function u (on
an open set Ω ⊂ X), if for all curves γ joining points x and y (in Ω) we have

|u(x)− u(y)| ≤
∫
γ

g ds

whenever both u(x) and u(y) are finite, and
∫
γ
g ds =∞ otherwise.

Under the above conditions (i) and (ii) the majority of the tools needed to
develop meaningful first-order calculus are available in the space X. Examples
of metric spaces satisfying both (i) and (ii) include (weighted) Euclidean spaces,
compact Riemannian manifolds, Carnot groups, and metric graphs. See for
instance the book [7] by Juha Heinonen and the references therein for more
information on analysis on metric spaces based on upper gradients and Poincaré
inequalities.

As the main tools used in the proofs of our recent results on Hardy inequal-
ities are Poincaré inequalities, basic covering theorems, the maximal theorem,
and the self-improvement of uniform p-fatness, and all of these are available
under conditions (i) and (ii) (the last one due to J. Björn, P. MacManus, and
N. Shanmugalingam [3]), all of our results hold in these metric spaces as well;
however, instead of smooth test functions we consider Lipchitz functions with
compact supports or the so-called Newtonian functions, which offer a substi-
tute for Sobolev functions in this setting. See [10] and [19] for the exact metric
space versions of the above results.
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Cambridge, at the University Press, 1952.

[7] J. Heinonen, ‘Lectures on analysis on metric spaces’, Universitext, Springer-Verlag,
New York, 2001.
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