Stochastic Loewner Evolutions
and Statistical Mechanics

Makoto KATORI !

Abstract: This is a review talk on the stochastic Loewner evolution (SLE) from the view
point of statistical physics. First we explain four important models of statistical mechanics
defined on planar lattices and their possible continuum (scaling) limits. Then SLE, is intro-
duced, where xk > 0 is a parameter indicating the variance of the one-dimensional Brownian
motion randomly driving the Loewner chain, and basic properties of SLE, are listed up. Fi-
nally the correspondence between the continuum (scaling) limits of the statistical mechanics
models and SLE,, with special values of x is discussed.

1 Statistical Mechanics Models and Measures on Con-
tinuous Path Space

1.1 Scaling limits of planar lattice models

On the complex plane C, put the square lattice S = Z x +/—1Z. A lattice path of length
n € N, w = (w(0),...,w(n)) is defined as a sequence of n + 1 vertices w(i) € S,0 <i <n
such that |w(i) —w(i—1)] = 1,1 < i < n. The (simple and symmetric) random walk model
is a statistical ensemble of lattice paths uniformly distributed in a set of lattice paths with
a given length. For z € S,n € N, let W? be the set of all lattice paths of length n starting
from z, i.e. w(0) = z. Since |W}?| = 4", the measure (weight) of each lattice path w € W/
is given by 47". We consider a collection of ensembles with different lengths of lattice paths
and call the element of the collection simply a random walk (RW).

Here we consider a square-shaped domain Dy = {z++/~1y: -1 <2 < 1,0 <y < 2},in
C and specify the two points on its boundary, O = 0 (the origin) and P = 2y/—1. (In this
article, a domain means a connected, open subset of C.) Then choose an integer N € N and
magnify the domain Dy by factor N with the origin fixed. Let Qx(Dy; O, P) be the collection
of all RWs {w} starting from NO = 0 (i.e. w(0) = 0) and terminating at NP = 2N+/—1
(i.e. w(|w|) = 2N+v/—1) such that w\ {w(0),w(|w|)} € N Dy, where the length of each lattice
path w is denoted by |w|. The total mass of this measure is given by

Zn(Do;O,P)y= Y 4kl (1.1)

weQ N (Do;0,P)

Such quantity is called the partition function in the statistical mechanics. We can show that
it decays as

Zn(Dg; O, P) ~ C(Dy; O, PN, N — o0, (1.2)
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where f(N) ~ g(N),N — oo means f(N)/g(N) — 1, N — oco. The coefficient C'(Dy; O, P)
is given by the normal derivative at the origin O € 90Dy of the Poisson kernel Hp, (-, P) in
the domain Dg. In the limit N — oo, we will have a collection of continuous paths {7},
which are the complex (i.e. the two-dimensional) Brownian motions (BM) running from O
to P in Dg. The total mass of them is given by C(Dy; O, P). The measure on the continuous
path space of BMs is called the Wiener measure.

Loop-erased RW (LERW) model

If the lattice path w € Qn(Dg; O, P) has the vertices such that w(i) = w(j),7 < j, then
the lattice path is said to be self-intersecting or having loops. From such a lattice path,
we can obtain a non-self-intersecting sub-lattice-path @ = (@(0),(1),...) by erasing loops
chronologically: set tg = 0,0(0) = w(ty) = 0, and for m > 1 let

tm = max {ﬁ >ttt w(l) = w(tym—1 + 1)}, o(m) = w(tm) = w(tm-1 +1).

We write the set of all non-self-intersecting lattice paths in NDy running from NO = 0
to NP as Q%(Dg; O, P). Each element of this set can be obtained from lattice paths in
Qn(Dy; O, P) by the above mentioned loop-erasing procedure. Note that the map from
lattice paths in Qn(Dog; O, P) to lattice paths in Q% (Dy; O, P) is many-to-one. To each
element of Q% (Dy; O, P), we put the sum of measures Y47l of all RWs that are mapped
to the loop-erased lattice path. The statistical ensemble of non-self-intersecting lattice paths
weighted in this way is called the loop-erased random walk (LERW) model.

To take a continuum limit of LERW, we introduce an index v > 0 and set

; 1
W/N (Ni/y> = (), 0<i<|vl (1.3)

for each w = (w(0),...,w(jw|)) € Q% (Dy; O, P), N € N. The obtained path w'/" is a non-
self-intersecting lattice path in Dy starting from the origin O = 0 and arriving at P = 2y/—1
at the |w|/N'/¥-th step, where the Euclidean length of each step is 1/N. It is expected that,
if we choose the value of v suitably, we can obtain the statistical ensemble of continuous
paths 7 in Dy running from O to P in the limit N — oo:

v : (0,t,) — Dy continuous, lglrélv(t) =0, %n”y(t) =P, t,€(0,00). (1.4)

Here the ‘time’ when each continuous path v arrives at the point P, ¢, = A}im |w|/NY" will
—00

be a random variable. We expect that the fractal dimension of the paths in the continuum
limit is dpgrw = 1/v, and 7 is simple; y(t1) # (t2),0 < ¢, < t5 < t,. The space of
all continuous paths (1.4) obtained by the continuum limit of the LERWSs is denoted by
Krerw (Do; O, P) and the measure on this space by E%gﬁ\g, p)- By definition of LERW, the
total mass is the same as that of the continuum limit of RWs (i.e. the complex BMs) and
given by C(Dy; O, P). Then

fibyi0.p) () = C(Do; O, Pt py(+) (1.5)

will define the probability measure u%ggg py having a support on Kperw(Do; O, P).



Self-avoiding walk (SAW) model

As a subset of W7, consider a set of all non-self-intersecting paths
Wio= {w eW? w()#w(j) forany 0<i<j< n}
By this definition [W | < |[W;| = 4". We can show that there is 2 < e < 3 such that

|, O\Ne n — oo,

where f(n) ~ g(n),n — oo means log f(n) ~ logg(n),n — oco. (The value €’ is called the
SAW connective constant, which depends on the lattice structure. The exact value for S is
not know, but numerically evaluated as 2.638.) Then we consider the statistical ensemble of
non-self-intersecting paths by giving the weight e ?“l to each element w having length |w|.
This ensemble is called the self-avoiding walk (SAW) model. The partition function of SAW
model, which is corresponding to (1.1) of RWs is given by

2N (D0, Py = Y el
wEQS)\,(DO;O,P)

It is conjectured that there is an index bgaw > 0 such that
Z3W(Dy; O, P) ~ C"W(Dy; O, PYN2s4W - N — o0, (1.6)

(Note that for the RWs and the LERWSs, we have seen from (1.2) that bgw = bpgrw = 1.)
The continuum limits v of SAWs should be simple as those of LERWSs, but the fractal
dimension dsaw will be different from dpgrw, since the measures are different from each
other. We expect that a measure of the continuous simple paths ,u?ﬁwo P)( -) is obtained
by taking the scaling limit of SAW model and the probability measure “(SSZYO, P)( -) will be
given by

Tiipno,p) () = C*W(Do: O, P)ipyio,p)(+)-

Critical percolation model

Here we put the triangular lattice on C instead of the square lattice; put 7 = exp(27v/—1/3)
and set T = {z + (i + j7)V3a : i,j € Z}, where a = 2/3 and 2y = ay/—1. Then
the planar dual lattice of T is given by the honeycomb lattice H with the lattice spac-
ing a, which includes the origin O and the point NP = 2N+/—1,N € N. At each vertex
z € T put a random variable n(z) € {0,1} following the Bernoulli measure v,,0 < p < 1:
vp(n(z) =1) = p,p(n(z) = 0) = 1 — p. That is, each n(z) takes 1 with probability p and 0
with probability 1 — p independently of other variables n(2’), 2’ # 2.

If we regard the vertices with 7(z) = 1 as wet sites and those with n(z) = 0 dry sites,
a configuration {n(z) : z € T} can be considered to represent how water percolates on a
surface of some material. The set of wet vertices, which can be connected by lattice paths
with a chosen vertex, is called a percolation cluster including the chosen vertex. It is known
that if p < 1/2 the percolation cluster including a specified vertex, say, the origin O is
bounded with probability one, and if p > 1/2 the probability that the percolation cluster
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Figure 1: The percolation model on T and the percolation exploration process on H. Wet vertices
(n(z) = 1) are indicated by black dots and dray ones (n(z) = 0) by white dots.

including O is unbounded is positive. We call p. = 1/2 the critical value and we say that
there occurs a phase transition at p. = 1/2. This model is called the percolation model.
(The critical value p. depends on lattice structure. For T, p. = 1/2, which is the reason why
here we consider the model on T.) Since the measure is Bernoulli, the total mass of measure
(the partition function) equal to one independently of the size N of domain, which implies
the index bpe, = 0.

From now on, we consider the critical percolation model by setting p = p. = 1/2. For
a fixed N € N, let TN NDy = Ay. Figure 1 shows the case with N = 6. As shown in
this figure, let A}, be the set of vertices in T such that they are in the neighborhood of
the boundary of NDy and located on the right of the straight line connecting O and P,
and let OA be the set of those vertices located on the left of the line. Then we assume
that n(z) = 1,Vz € A} and n(z) = 0,Vz € Ay, which is called the Dobrushin boundary
condition. The variables on other vertices inside of Ay, “Ax = Ay N (OAL)S N (OAy)C, are
randomly distributed following vy 5.

For any realization of random configuration 7 € {0, 1}OAN , there is a unique lattice path
w on HN NDy running from the origin O to NP such that it has all wet vertices on one
side and all dry vertices on the other side in the neighborhood of the lattice path. This is
called the percolation exploration process (see Fig.1).

If we choose an index v > 0 suitably and set (1.3), we will obtain a continuous path (1.4)
with the fractal dimension dye, = 1/ in the scaling limit N — oo. The continuous path 7 is
now not simple. The probability measure of the continuum limits of percolation exploration
processes {7} is denoted by i, . p(+)-



Critical Ising model

Let Ay = Ay UOAL UOAy. For each vertex z € Ay put a variable o(z) € {—1,1},
which we call a spin variable. We assume the Dobrushin boundary condition: o(z) = +1 for
z € (9Af,. Inside of the region °Ay, spin variables are randomly distributed. The function
o e {—1,1}"¥ — R given by

Eo) = —% S o))

2,2'€AN:|z—2'|=V3a

is called the energy. Spin configurations are distributed with the Gibbs measure with pa-

rameter 3 > 0,
) ZN,g = Z e PE()

oce{—1,1}AN

WN,B(U) = Zn s

and this spin system is called the Ising model with the inverse temperature 3. This is a
model representing magnetization of some materials.

For each spin configuration, we can define the Ising exploration process on HNN Dy in the
similar way to the percolation exploration process. Note that in this case the lattice path of
the Ising exploration process is sandwiched by sites with o(z) = 1 and those with o(2) = —1,
while the lattice path of the percolation exploration process is done by wet sites and dry
sites. In particular, we consider the Ising exploration process with the Gibbs measure at
the critical value of parameter, which is known to be . = (log3)/4 for T. For this critical
Ising exploration processes, we can take the scaling limit and obtain the continuous paths
{~} with the fractal dimension dig,,. The continuous paths are expected to be simple. The

measure of the paths is denoted by ﬁ%sgf() Py ()

1.2 Conformal invariance and domain Markov property

If f is holomorphic in Dy C C and f'(z) # 0,Vz € Dy, we call
fiDo —  f(Do) (1.7)

a conformal transformation. Assume that by f the points O, P on the boundary 0D, are
mapped to the points f(O), f(P) on df(Dy). The measures of continuum paths {7} obtained
in the scaling limits of the statistical mechanics models on planar lattices discussed in Section
1.1

Ti(py0,p)(+) = C(Do; O, P)pypyo.p)( ) (1.8)

are expected to have the following two properties.

Conformal covariance and conformal invariance

There is an index b such that for any conformal transformation (1.7), the equality

o Tipwo.r) () = I O (P Fspoys0).pn (+) (1.9)



is established. This equality should be compared with the asymptotic behavior of partition
functions of statistical mechanics models shown by, for example, (1.6). The scaling (1.3) cor-
responds to performing the conformal transformation by a simple dilatation f(z) = z/N, N €
N and in this case the factor in RHS of (1.9) becomes |f'(O)[°|f'(P)|® = N=2*. Then the
index b in (1.9) is identified with the index showing asymptotics of the partition function in
the limit N — oo. By the form of (1.9)0b is called the boundary scaling exponent Equality
(1.9) implies the conformal covariance of the total mass of measure

C(Do; O, P) = |f(O)If (P)I"C(f(Do); f(O), f(P))

and the conformal invariance of the probability measure

1(D;0,P)(* ) = L(f(Do):£(0),1(P)) (*)- (1.10)

Domain Markov Property

With fipy;0,p), suppose that we observe an initial segment of the path up to a time
t denoted by 7(0,t] for an arbitrary ¢t € (0,¢,). Then the conditional distribution of the
remaining part of the path is the same as the distribution of path in the domain Dy \ (0, ¢],
which starts from ~(t) and arrives at y(t,) = P:

M(Do;o,P)< : ’7(0775]) = I(Do\+(0,8]4(t),P) (*)-

This is called the domain Markov property.

1.3 Restriction property and locality property

In some special cases the measure (1.8) can have the following properties in addition to the
conformal covariance/invariance and the domain Markov property.

Restriction property
Consider a simply connected subdomain D; C Dqy such that O, P € 0Dy N 9dD;. (A
domain D is said to be simply connected if C \ D is a connected subset of the Riemann
sphere @) We consider the LERW in this subdomain D; and perform the scaling limit
as explained in Section 1.1 to define the measure E%gs\g, P) for continuous paths. Since the
domain D, is a subset of D and lattice paths of RWs are restricted by narrowing the region
where RW can run, the measures added to each LERW from RWs in D; in the loop-erasing
procedure will be decreased. Then in general for the Radon-Nikodym derivative
dDy0,p)
dB(Dy0,p)

<1, DiCDy D, 7é Dy.

For the continuum limit of the SAW model, however, the following equality will hold,

A, 0,p
dﬂ(SA;{/ ) = 1{7(0”57) C Dl}a Dl C DO; (1.11)

(Do;0,P)



where 1{w} is an indicator function of the event w. The equality (1.11) is called the restriction
property.

Locality property

Since the random variables 7’s in the percolation model are distributed following the
Bernoulli measure, the behavior of the percolation exploration process depends only on
the n-configurations on the vertices which are adjacent to the lattice path of the process.
Then the probability measure pP°" of the continuous paths obtained in the scaling limit is
expected to have the following property. For a simply connected subdomain Dy C Dy with
O,P € 0DyNoD,

W o (V(0.8]) = 175 o (10D 1{7(0,8) € D1}, Ve e (0.t).  (112)

Ising

This is called the locality property. We can not expect this property for i

Remark that the restriction property (1.11) is the property for the entire path (0, 1,),
but the locality property (1.12) should hold for any initial segment ~(0,t],¢ € (0,t,). Then
the locality property is stronger than the restriction property.

2 Stochastic Loewner Evolution (SLE)

2.1 Riemann mapping theorem

Let D, D’ be simply connected domains in C and assume that D, D" # C, z,w € 0D,
and 2',w’" € D' By the Riemann mapping theorem, we can conclude that there is a one-
parameter family of

conformal transformations f:D — D', st. f(z) =2, f(w)=w'"
If we assume the condition |f’(w)| = 1, then the conformal transformation is uniquely
determined.

Let H= {z € C: Im 2z > 0}0From the above result, if a conformally invariant probability
measure fi(go,00) 18 given, we can obtain the probability measure ji(pr..s ) for any simply
connected domain D' C C,D’" # C with 2/,w’ € 90D" by the conformal transformation
f:D=H — D'. Moreover, if w' = oo € 9D’ for the domain D' C H and f(c0) = oo,
the assumption |f’(w)| = 1 simplifies the conformal covariance (1.9) of the measure to be

f Oﬁ(H;m,oo)( ’ ) = |f/(‘r)|bﬁ(D/;z’,oo)( ’ ),ZE €R=0H \ {OO}, f(l') =2 e oD \ {OO}
2.2 Loewner differential equation

Suppose that 7 : (0, 00) — H is a simple path from ltilr(r)l v(t) = Uy € R to Hm v(t) = oco. Then

for each ¢t € (0,00) there is a unique conformal transformation f : H\ v(0,¢] — H such that
lim f'(z) = 1, which is denoted by g;. It has the expansion

g:(2) :z—l—@—i—O(IZ\Q), 2 — 00, (2.1)



where a(t) > 0 is the half-plane capacity of the path v(0,¢]. The conformal transformation
g+(2) solves the following differential equation

d _ da(t)/dt B
Egt(z) = ale) =T go(2) = z, (2.2)

which is called the (chordal) Loewner equation. Here U; = g4(7(¢)) € R in the sense

lim 9:(2) = Uy, (2.3)

z—(t),z€H\7(0,t]

and U; : [0,00) — R is continuous. The family of conformal transformations parameterized
by time (g¢):>0 is called the Loewner chain.

In the above, given a continuous path (0, ¢] and a continuous function Uy, t € (0, 00),
the equation (2.2) is introduced. We will change the situation. Given a strictly increasing
C! function a : [0,00) — [0,00) with a(0) = 0 and a continuous function U; : [0,00) — R,
we will consider the Loewner equation (2.2). For each z € H, the solution of the equation
g+(z) exists up to time T, = sup{t > 0 : g:(z) — U; # 0}. It can be shown that for fixed ¢,
g: is the conformal transformation of H; = {z € H : T, > t} onto H having the expansion
(2.1) at infinity.

Corresponding to (2.3), the trace of Loewner chain is defined by

y(0) = lim g7 (z+ ), (24)
If the limit does not exist, let y(¢) denote the set of all limit points. We say that the trace
of Loewner chain is a continuous path, if the limit (2.4) exists for every ¢ € [0, 00) and 7(?)
is a continuous function of ¢.

2.3 SLE,

Now we put U; be an appropriate stochastic process and consider the statistical ensemble of
the continuous paths {7} which give the traces of the Loewner chains (2.4). We parameterize
the path so that a(t) = at,a > 0. As the measure of the paths {7}, we want to construct
Hmo,00) SO that it can describe the measure of continuous paths obtained by the scaling
limit of statistical mechanics model discussed in Section 1. The condition that fig o) 18
conformally covariant and has the domain Markov property requires U; be continuous with
stationary and independent increment. It implies that U; is a one-dimensional Brownian
motion (BM). (Here we are not interested in drift.)

In this setting, we can choose the variance of BM and the parameter a. Since the “speed
of the growth” of the path + is irrelevant for statistics of v (i.e. we can perform time change),
there is only one free parameter. Following the original paper by Schramm [6], we set a = 2
and a single positive parameter  is used for the variance of BM. The (chordal) stochastic
Loewner evolution (Schramm-Loewner evolution) with parameter x is the solution of

%gt(z) = m, go(2) = z, (2.5)



where B; is a standard (i.e. the variance 1) one-dimensional BM with By = 0. (Note that
/KBy has the same distribution as By.) If the trace of g; is a random continuous path -,
then v is called the SLE,, path.

By the above reasoning, any measure on the continuous path space, which has the con-
formal covariance/invariance and the domain Markov property, is given by an appropriate
conformal transformation of an element of the one-parameter family of measures for SLE,
paths, which is denoted by {ﬂ?ﬂ;o,oo)}w()'

2.4 Basic properties of SLE,

In the present talk, I will explain the following basic properties of SLE,. The statements
hold with probability one.

(1) SLE, trace is a continuous path for x > 0 [5, 4].

(2)  There are three phases of SLE, paths [2, 3]. (a) If k < 4, SLE, paths are simple and
7(0,00) € H. (b) If 4 < k < 8, SLE,, paths are self-intersecting and (0, 00) NR # (),
but for each z € H, P[z € 7(0,00)] = 0. (c) If K > 8, SLE,, paths are self-intersecting
and [0, 00) = H, i.e. v is plane-filling. See Figure 2.

< 4

(@ (b) (©)

Figure 2: The three phases of SLE, paths.

(3) The Hausdorff dimension of SLE, path is given by [1]

d(k) :min{1+g,2}, k>0, (2.6)

(4)  SLE, measure [i{j, ., has the locality property if and only if x = 6 [2, 3].

(5)  The boundary scaling exponent b of SLE, path is given by [2, 3]

_6—&
2%k

b(k) k> 0. (2.7)



w1 oo

(6) SLE, measure [i{j, ., has the restriction property if and only if x = = [2, 3].

3 Correspondence

. . per 3 _SAW
If conformal invariance of 1(Dy:0.P) and conformal covariance of I(Dy.0,p) BTr€ proved, the

former will be identified with u’(‘ﬁgm) and latter with ﬁ'&; 3/03;) (mod. conformal transforma-
tion). The former was proved by Smirnov [7], but the latter is open. In addition to that,
the following were proved: fi{50'p) = Mooy 16, 4] and EESZSI;%O,P) = (T 00) (8] The both
equalities hold if we perform appropriate conformal transformation f : H — Dy.
Combining with the results (2.6) and (2.7) on d(x) and b(k), the indices (critical ex-
ponents) of the statistical mechanics models on the planar lattices will be determined as

follows:
5 4 7
dLerw = d(2) = 1 dsaw = d(8/3) = 3’ dising = d(3) = —,  dper = d(6) = 7
bt 1
bLERW - b(2) - 1, bSAW - b(8/3) - g, bIsing - b(?)) - 5, bper - b(6) - 0
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