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Abstract: This is a review talk on the stochastic Loewner evolution (SLE) from the view
point of statistical physics. First we explain four important models of statistical mechanics
defined on planar lattices and their possible continuum (scaling) limits. Then SLEκ is intro-
duced, where κ > 0 is a parameter indicating the variance of the one-dimensional Brownian
motion randomly driving the Loewner chain, and basic properties of SLEκ are listed up. Fi-
nally the correspondence between the continuum (scaling) limits of the statistical mechanics
models and SLEκ with special values of κ is discussed.

1 Statistical Mechanics Models and Measures on Con-

tinuous Path Space

1.1 Scaling limits of planar lattice models

On the complex plane C, put the square lattice S = Z × √−1Z. A lattice path of length
n ∈ N, ω = (ω(0), . . . , ω(n)) is defined as a sequence of n + 1 vertices ω(i) ∈ S, 0 ≤ i ≤ n
such that |ω(i)− ω(i− 1)| = 1, 1 ≤ i ≤ n. The (simple and symmetric) random walk model
is a statistical ensemble of lattice paths uniformly distributed in a set of lattice paths with
a given length. For z ∈ S, n ∈ N, let W z

n be the set of all lattice paths of length n starting
from z, i.e. ω(0) = z. Since |W z

n | = 4n, the measure (weight) of each lattice path ω ∈ W z
n

is given by 4−n. We consider a collection of ensembles with different lengths of lattice paths
and call the element of the collection simply a random walk (RW).

Here we consider a square-shaped domain D0 = {x +
√−1y : −1 < x < 1, 0 < y < 2}, in

C and specify the two points on its boundary, O = 0 (the origin) and P = 2
√−1. (In this

article, a domain means a connected, open subset of C.) Then choose an integer N ∈ N and
magnify the domain D0 by factor N with the origin fixed. Let ΩN (D0; O, P ) be the collection
of all RWs {ω} starting from NO = 0 (i.e. ω(0) = 0) and terminating at NP = 2N

√−1
(i.e. ω(|ω|) = 2N

√−1) such that ω \{ω(0), ω(|ω|)} ⊂ ND0, where the length of each lattice
path ω is denoted by |ω|. The total mass of this measure is given by

ZN(D0; O, P ) =
∑

ω∈ΩN (D0;O,P )

4−|ω|. (1.1)

Such quantity is called the partition function in the statistical mechanics. We can show that
it decays as

ZN(D0; O, P ) ∼ C(D0; O, P )N−2, N → ∞, (1.2)
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where f(N) ∼ g(N), N → ∞ means f(N)/g(N) → 1, N → ∞. The coefficient C(D0; O, P )
is given by the normal derivative at the origin O ∈ ∂D0 of the Poisson kernel HD0(·, P ) in
the domain D0. In the limit N → ∞, we will have a collection of continuous paths {γ},
which are the complex (i.e. the two-dimensional) Brownian motions (BM) running from O
to P in D0. The total mass of them is given by C(D0; O, P ). The measure on the continuous
path space of BMs is called the Wiener measure.

Loop-erased RW (LERW) model

If the lattice path ω ∈ ΩN (D0; O, P ) has the vertices such that ω(i) = ω(j), i < j, then
the lattice path is said to be self-intersecting or having loops. From such a lattice path,
we can obtain a non-self-intersecting sub-lattice-path ω̂ = (ω̂(0), ω̂(1), . . . ) by erasing loops
chronologically: set t0 = 0, ω̂(0) = ω(t0) = 0, and for m ≥ 1 let

tm = max
{

� > tm−1 : ω(�) = ω(tm−1 + 1)
}
, ω̂(m) = ω(tm) = ω(tm−1 + 1).

We write the set of all non-self-intersecting lattice paths in ND0 running from NO = 0
to NP as Ω0

N(D0; O, P ). Each element of this set can be obtained from lattice paths in
ΩN (D0; O, P ) by the above mentioned loop-erasing procedure. Note that the map from
lattice paths in ΩN (D0; O, P ) to lattice paths in Ω0

N (D0; O, P ) is many-to-one. To each
element of Ω0

N (D0; O, P ), we put the sum of measures
∑

ω 4−|ω| of all RWs that are mapped
to the loop-erased lattice path. The statistical ensemble of non-self-intersecting lattice paths
weighted in this way is called the loop-erased random walk (LERW) model.

To take a continuum limit of LERW, we introduce an index ν > 0 and set

ω1/N

(
i

N1/ν

)
=

1

N
ω(i), 0 ≤ i ≤ |ω| (1.3)

for each ω = (ω(0), . . . , ω(|ω|)) ∈ Ω0
N (D0; O, P ), N ∈ N. The obtained path ω1/N is a non-

self-intersecting lattice path in D0 starting from the origin O = 0 and arriving at P = 2
√−1

at the |ω|/N1/ν-th step, where the Euclidean length of each step is 1/N . It is expected that,
if we choose the value of ν suitably, we can obtain the statistical ensemble of continuous
paths γ in D0 running from O to P in the limit N → ∞:

γ : (0, tγ) → D0 continuous, lim
t↓0

γ(t) = O, lim
t↑tγ

γ(t) = P, tγ ∈ (0,∞). (1.4)

Here the ‘time’ when each continuous path γ arrives at the point P , tγ = lim
N→∞

|ω|/N1/ν will

be a random variable. We expect that the fractal dimension of the paths in the continuum
limit is dLERW = 1/ν, and γ is simple; γ(t1) 
= γ(t2), 0 ≤ t1 < t2 ≤ tγ . The space of
all continuous paths (1.4) obtained by the continuum limit of the LERWs is denoted by
KLERW(D0; O, P ) and the measure on this space by μLERW

(D0;O,P ). By definition of LERW, the

total mass is the same as that of the continuum limit of RWs (i.e. the complex BMs) and
given by C(D0; O, P ). Then

μLERW
(D0;O,P )( · ) = C(D0; O, P )μLERW

(D0;O,P )( · ) (1.5)

will define the probability measure μLERW
(D0;O,P ) having a support on KLERW(D0; O, P ).
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Self-avoiding walk (SAW) model

As a subset of W z
n , consider a set of all non-self-intersecting paths

W z
n,0 =

{
ω ∈ W z

n : ω(i) 
= ω(j) for any 0 ≤ i < j ≤ n
}
.

By this definition |W z
n,0| < |W z

n | = 4n. We can show that there is 2 < eβ < 3 such that

|W z
n,0| � eβn, n → ∞,

where f(n) � g(n), n → ∞ means log f(n) ∼ log g(n), n → ∞. (The value eβ is called the
SAW connective constant, which depends on the lattice structure. The exact value for S is
not know, but numerically evaluated as 2.638.) Then we consider the statistical ensemble of
non-self-intersecting paths by giving the weight e−β|ω| to each element ω having length |ω|.
This ensemble is called the self-avoiding walk (SAW) model. The partition function of SAW
model, which is corresponding to (1.1) of RWs is given by

ZSAW
N (D0; O, P ) =

∑
ω∈Ω0

N (D0;O,P )

e−β|ω|.

It is conjectured that there is an index bSAW > 0 such that

ZSAW
N (D0; O, P ) ∼ CSAW(D0; O, P )N−2bSAW, N → ∞. (1.6)

(Note that for the RWs and the LERWs, we have seen from (1.2) that bRW = bLERW = 1.)
The continuum limits γ of SAWs should be simple as those of LERWs, but the fractal
dimension dSAW will be different from dLERW, since the measures are different from each
other. We expect that a measure of the continuous simple paths μSAW

(D0;O,P )( · ) is obtained

by taking the scaling limit of SAW model and the probability measure μSAW
(D0;O,P )( · ) will be

given by
μSAW

(D0;O,P )( · ) = CSAW(D0; O, P )μSAW
(D0;O,P )( · ).

Critical percolation model

Here we put the triangular lattice on C instead of the square lattice; put τ = exp(2π
√−1/3)

and set T = {z0 + (i + jτ)
√

3a : i, j ∈ Z}, where a = 2/3 and z0 = a
√−1. Then

the planar dual lattice of T is given by the honeycomb lattice H with the lattice spac-
ing a, which includes the origin O and the point NP = 2N

√−1, N ∈ N. At each vertex
z ∈ T put a random variable η(z) ∈ {0, 1} following the Bernoulli measure νp, 0 ≤ p ≤ 1:
νp(η(z) = 1) = p, νp(η(z) = 0) = 1 − p. That is, each η(z) takes 1 with probability p and 0
with probability 1 − p independently of other variables η(z′), z′ 
= z.

If we regard the vertices with η(z) = 1 as wet sites and those with η(z) = 0 dry sites,
a configuration {η(z) : z ∈ T} can be considered to represent how water percolates on a
surface of some material. The set of wet vertices, which can be connected by lattice paths
with a chosen vertex, is called a percolation cluster including the chosen vertex. It is known
that if p ≤ 1/2 the percolation cluster including a specified vertex, say, the origin O is
bounded with probability one, and if p > 1/2 the probability that the percolation cluster
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Figure 1: The percolation model on T and the percolation exploration process on H. Wet vertices
(η(z) = 1) are indicated by black dots and dray ones (η(z) = 0) by white dots.

including O is unbounded is positive. We call pc = 1/2 the critical value and we say that
there occurs a phase transition at pc = 1/2. This model is called the percolation model.
(The critical value pc depends on lattice structure. For T, pc = 1/2, which is the reason why
here we consider the model on T.) Since the measure is Bernoulli, the total mass of measure
(the partition function) equal to one independently of the size N of domain, which implies
the index bper = 0.

From now on, we consider the critical percolation model by setting p = pc = 1/2. For
a fixed N ∈ N, let T ∩ ND0 = ΛN . Figure 1 shows the case with N = 6. As shown in
this figure, let ∂Λ+

N be the set of vertices in T such that they are in the neighborhood of
the boundary of ND0 and located on the right of the straight line connecting O and P ,
and let ∂Λ−

N be the set of those vertices located on the left of the line. Then we assume
that η(z) = 1, ∀z ∈ ∂Λ+

N and η(z) = 0, ∀z ∈ ∂Λ−
N , which is called the Dobrushin boundary

condition. The variables on other vertices inside of ΛN , 0ΛN = ΛN ∩ (∂Λ+
N )c ∩ (∂Λ−

N )c, are
randomly distributed following ν1/2.

For any realization of random configuration η ∈ {0, 1}0ΛN , there is a unique lattice path
ω on H ∩ ND0 running from the origin O to NP such that it has all wet vertices on one
side and all dry vertices on the other side in the neighborhood of the lattice path. This is
called the percolation exploration process (see Fig.1).

If we choose an index ν > 0 suitably and set (1.3), we will obtain a continuous path (1.4)
with the fractal dimension dper = 1/ν in the scaling limit N → ∞. The continuous path γ is
now not simple. The probability measure of the continuum limits of percolation exploration
processes {γ} is denoted by μper

(D0;O,P )( · ).
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Critical Ising model

Let ΛN = ΛN ∪ ∂Λ+
N ∪ ∂Λ−

N . For each vertex z ∈ ΛN put a variable σ(z) ∈ {−1, 1},
which we call a spin variable. We assume the Dobrushin boundary condition: σ(z) = ±1 for
z ∈ ∂Λ±

N . Inside of the region 0ΛN , spin variables are randomly distributed. The function

σ ∈ {−1, 1}ΛN → R given by

E(σ) = −1

2

∑
z,z′∈ΛN :|z−z′|=√

3a

σ(z)σ(z′)

is called the energy. Spin configurations are distributed with the Gibbs measure with pa-
rameter β > 0,

πN,β(σ) =
e−βE(σ)

ZN,β
, ZN,β =

∑
σ∈{−1,1}ΛN

e−βE(σ)

and this spin system is called the Ising model with the inverse temperature β. This is a
model representing magnetization of some materials.

For each spin configuration, we can define the Ising exploration process on H∩ND0 in the
similar way to the percolation exploration process. Note that in this case the lattice path of
the Ising exploration process is sandwiched by sites with σ(z) = 1 and those with σ(z) = −1,
while the lattice path of the percolation exploration process is done by wet sites and dry
sites. In particular, we consider the Ising exploration process with the Gibbs measure at
the critical value of parameter, which is known to be βc = (log 3)/4 for T. For this critical
Ising exploration processes, we can take the scaling limit and obtain the continuous paths
{γ} with the fractal dimension dIsing. The continuous paths are expected to be simple. The

measure of the paths is denoted by μIsing
(D0;O,P )( · ).

1.2 Conformal invariance and domain Markov property

If f is holomorphic in D0 ⊂ C and f ′(z) 
= 0, ∀z ∈ D0, we call

f : D0 → f(D0) (1.7)

a conformal transformation. Assume that by f the points O, P on the boundary ∂D0 are
mapped to the points f(O), f(P ) on ∂f(D0). The measures of continuum paths {γ} obtained
in the scaling limits of the statistical mechanics models on planar lattices discussed in Section
1.1

μ(D0;O,P )( · ) = C(D0; O, P )μ(D0;O,P )( · ) (1.8)

are expected to have the following two properties.

Conformal covariance and conformal invariance

There is an index b such that for any conformal transformation (1.7), the equality

f ◦ μ(D0;O,P )( · ) = |f ′(O)|b|f ′(P )|bμ(f(D0);f(O),f(P ))( · ) (1.9)
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is established. This equality should be compared with the asymptotic behavior of partition
functions of statistical mechanics models shown by, for example, (1.6). The scaling (1.3) cor-
responds to performing the conformal transformation by a simple dilatation f(z) = z/N, N ∈
N and in this case the factor in RHS of (1.9) becomes |f ′(O)|b|f ′(P )|b = N−2b. Then the
index b in (1.9) is identified with the index showing asymptotics of the partition function in
the limit N → ∞. By the form of (1.9)，b is called the boundary scaling exponent．Equality
(1.9) implies the conformal covariance of the total mass of measure

C(D0; O, P ) = |f ′(O)|b|f ′(P )|bC(f(D0); f(O), f(P ))

and the conformal invariance of the probability measure

μ(D0;O,P )( · ) = μ(f(D0);f(O),f(P ))( · ). (1.10)

Domain Markov Property

With μ(D0;O,P ), suppose that we observe an initial segment of the path up to a time
t denoted by γ(0, t] for an arbitrary t ∈ (0, tγ). Then the conditional distribution of the
remaining part of the path is the same as the distribution of path in the domain D0 \ γ(0, t],
which starts from γ(t) and arrives at γ(tγ) = P :

μ(D0;O,P )

(
·

∣∣∣γ(0, t]
)

= μ(D0\γ(0,t];γ(t),P )( · ).

This is called the domain Markov property.

1.3 Restriction property and locality property

In some special cases the measure (1.8) can have the following properties in addition to the
conformal covariance/invariance and the domain Markov property.

Restriction property

Consider a simply connected subdomain D1 ⊂ D0 such that O, P ∈ ∂D0 ∩ ∂D1. (A

domain D is said to be simply connected if Ĉ \ D is a connected subset of the Riemann

sphere Ĉ.) We consider the LERW in this subdomain D1 and perform the scaling limit
as explained in Section 1.1 to define the measure μLERW

(D1;O,P ) for continuous paths. Since the
domain D1 is a subset of D0 and lattice paths of RWs are restricted by narrowing the region
where RW can run, the measures added to each LERW from RWs in D1 in the loop-erasing
procedure will be decreased. Then in general for the Radon-Nikodym derivative

dμLERW
(D1;O,P )

dμLERW
(D0;O,P )

< 1, D1 ⊂ D0, D1 
= D0.

For the continuum limit of the SAW model, however, the following equality will hold,

dμSAW
(D1;O,P )

dμSAW
(D0;O,P )

= 1{γ(0, tγ) ⊂ D1}, D1 ⊂ D0, (1.11)
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where 1{ω} is an indicator function of the event ω. The equality (1.11) is called the restriction
property.

Locality property

Since the random variables η’s in the percolation model are distributed following the
Bernoulli measure, the behavior of the percolation exploration process depends only on
the η-configurations on the vertices which are adjacent to the lattice path of the process.
Then the probability measure μper of the continuous paths obtained in the scaling limit is
expected to have the following property. For a simply connected subdomain D1 ⊂ D0 with
O, P ∈ ∂D0 ∩ ∂D1

μper
(D1;O,P )(γ(0, t]) = μper

(D0;O,P )(γ(0, t])1{γ(0, t) ⊂ D1}, ∀t ∈ (0, tγ). (1.12)

This is called the locality property. We can not expect this property for μIsing.
Remark that the restriction property (1.11) is the property for the entire path γ(0, tγ),

but the locality property (1.12) should hold for any initial segment γ(0, t], t ∈ (0, tγ). Then
the locality property is stronger than the restriction property.

2 Stochastic Loewner Evolution (SLE)

2.1 Riemann mapping theorem

Let D, D′ be simply connected domains in C and assume that D, D′ 
= C, z, w ∈ ∂D,
and z′, w′ ∈ ∂D′．By the Riemann mapping theorem, we can conclude that there is a one-
parameter family of

conformal transformations f : D → D′, s.t. f(z) = z′, f(w) = w′.

If we assume the condition |f ′(w)| = 1, then the conformal transformation is uniquely
determined.

Let H = {z ∈ C : Im z > 0}．From the above result, if a conformally invariant probability
measure μ(� ;0,∞) is given, we can obtain the probability measure μ(D′;z′,w′) for any simply
connected domain D′ ⊂ C, D′ 
= C with z′, w′ ∈ ∂D′ by the conformal transformation
f : D ≡ H → D′. Moreover, if w′ = ∞ ∈ ∂D′ for the domain D′ ⊂ H and f(∞) = ∞,
the assumption |f ′(w)| = 1 simplifies the conformal covariance (1.9) of the measure to be
f ◦ μ(� ;x,∞)( · ) = |f ′(x)|bμ(D′;z′,∞)( · ), x ∈ R = ∂H \ {∞}, f(x) = z′ ∈ ∂D′ \ {∞}.

2.2 Loewner differential equation

Suppose that γ : (0,∞) → H is a simple path from lim
t↓0

γ(t) = U0 ∈ R to lim
t↑∞

γ(t) = ∞. Then

for each t ∈ (0,∞) there is a unique conformal transformation f : H \ γ(0, t] → H such that
lim
z→∞

f ′(z) = 1, which is denoted by gt. It has the expansion

gt(z) = z +
a(t)

z
+ O(|z|−2), z → ∞, (2.1)
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where a(t) > 0 is the half-plane capacity of the path γ(0, t]. The conformal transformation
gt(z) solves the following differential equation

d

dt
gt(z) =

da(t)/dt

gt(z) − Ut
, g0(z) = z, (2.2)

which is called the (chordal) Loewner equation. Here Ut = gt(γ(t)) ∈ R in the sense

lim
z→γ(t),z∈�\γ(0,t]

gt(z) = Ut, (2.3)

and Ut : [0,∞) → R is continuous. The family of conformal transformations parameterized
by time (gt)t≥0 is called the Loewner chain.

In the above, given a continuous path γ(0, t] and a continuous function Ut, t ∈ (0,∞),
the equation (2.2) is introduced. We will change the situation. Given a strictly increasing
C1 function a : [0,∞) → [0,∞) with a(0) = 0 and a continuous function Ut : [0,∞) → R,
we will consider the Loewner equation (2.2). For each z ∈ H, the solution of the equation
gt(z) exists up to time Tz = sup{t > 0 : gt(z) − Ut 
= 0}. It can be shown that for fixed t,
gt is the conformal transformation of Ht ≡ {z ∈ H : Tz > t} onto H having the expansion
(2.1) at infinity.

Corresponding to (2.3), the trace of Loewner chain is defined by

γ(t) ≡ lim
z→0,z∈�

g−1
t (z + Ut). (2.4)

If the limit does not exist, let γ(t) denote the set of all limit points. We say that the trace
of Loewner chain is a continuous path, if the limit (2.4) exists for every t ∈ [0,∞) and γ(t)
is a continuous function of t.

2.3 SLEκ

Now we put Ut be an appropriate stochastic process and consider the statistical ensemble of
the continuous paths {γ} which give the traces of the Loewner chains (2.4). We parameterize
the path so that a(t) = at, a > 0. As the measure of the paths {γ}, we want to construct
μ(� ;0,∞) so that it can describe the measure of continuous paths obtained by the scaling
limit of statistical mechanics model discussed in Section 1. The condition that μ(� ;0,∞) is
conformally covariant and has the domain Markov property requires Ut be continuous with
stationary and independent increment. It implies that Ut is a one-dimensional Brownian
motion (BM). (Here we are not interested in drift.)

In this setting, we can choose the variance of BM and the parameter a. Since the “speed
of the growth” of the path γ is irrelevant for statistics of γ (i.e. we can perform time change),
there is only one free parameter. Following the original paper by Schramm [6], we set a = 2
and a single positive parameter κ is used for the variance of BM. The (chordal) stochastic
Loewner evolution (Schramm-Loewner evolution) with parameter κ is the solution of

d

dt
gt(z) =

2

gt(z) −√
κBt

, g0(z) = z, (2.5)
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where Bt is a standard (i.e. the variance 1) one-dimensional BM with B0 = 0. (Note that√
κBt has the same distribution as Bκt.) If the trace of gt is a random continuous path γ,

then γ is called the SLEκ path.
By the above reasoning, any measure on the continuous path space, which has the con-

formal covariance/invariance and the domain Markov property, is given by an appropriate
conformal transformation of an element of the one-parameter family of measures for SLEκ

paths, which is denoted by {μκ
(� ;0,∞)}κ>0.

2.4 Basic properties of SLEκ

In the present talk, I will explain the following basic properties of SLEκ. The statements
hold with probability one.

(1) SLEκ trace is a continuous path for κ > 0 [5, 4].

(2) There are three phases of SLEκ paths [2, 3]. (a) If κ ≤ 4, SLEκ paths are simple and
γ(0,∞) ∈ H. (b) If 4 < κ < 8, SLEκ paths are self-intersecting and γ(0,∞) ∩ R 
= ∅,
but for each z ∈ H, P[z ∈ γ(0,∞)] = 0. (c) If κ ≥ 8, SLEκ paths are self-intersecting
and γ[0,∞) = H, i.e. γ is plane-filling. See Figure 2.

0 0 0

(a) (b) (c)

Figure 2: The three phases of SLEκ paths.

(3) The Hausdorff dimension of SLEκ path is given by [1]

d(κ) = min
{

1 +
κ

8
, 2

}
, κ > 0. (2.6)

(4) SLEκ measure μκ
(� ;0,∞) has the locality property if and only if κ = 6 [2, 3].

(5) The boundary scaling exponent b of SLEκ path is given by [2, 3]

b(κ) =
6 − κ

2κ
, κ > 0. (2.7)
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(6) SLEκ measure μκ
(� ;0,∞) has the restriction property if and only if κ =

8

3
[2, 3].

3 Correspondence

If conformal invariance of μper
(D0;0,P ) and conformal covariance of μSAW

(D0;O,P ) are proved, the

former will be identified with μκ=6
(� ;0,∞) and latter with μ

κ=8/3
(� ;0,∞) (mod. conformal transforma-

tion). The former was proved by Smirnov [7], but the latter is open. In addition to that,
the following were proved: μLERW

(D0;0,P ) = μκ=2
(� ;0,∞) [6, 4] and μIsing

(D0;0,P ) = μκ=3
(� ;0,∞) [8]. The both

equalities hold if we perform appropriate conformal transformation f : H → D0.
Combining with the results (2.6) and (2.7) on d(κ) and b(κ), the indices (critical ex-

ponents) of the statistical mechanics models on the planar lattices will be determined as
follows:

dLERW = d(2) =
5

4
, dSAW = d(8/3) =

4

3
, dIsing = d(3) =

11

8
, dper = d(6) =

7

4
,

bLERW = b(2) = 1, bSAW = b(8/3) =
5

8
, bIsing = b(3) =

1

2
, bper = b(6) = 0.
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