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1 Introduction

In this talk, we report our trial up to now clarifying explicit relations between
the measure hyperbolicities and the positivities of the canonical bundle. For
this purpose, our method is to investigatie the curvatures of the pseudo-
volume forms defining the measure hyperbolicities. We particularly consider
the Carathéodory measure hyperbolic case at this time.

The concepts of measure hyperbolicities appear when the Schwarz lemma
is generalized to a higher dimensional case if it is regarded as the volume
decreasing property. For instance, Kobayashi measure hyperbolicity and its
dual version, Carathéodory measure hyperbolicity, are two of them. They
are defined by some positivity conditions of some intrinsic pseudo-volume
forms (for example, Carathéodory measure hyperbolicity is defined by the
Carathéodory pseudo-volume form, and so on). By their definition, it can
be expected that the measure hyperbolic manifold looks like a manifold with
a metric whose Ricci curvature is negative. Hence it is very likely that the
measure hyperbolicities lead to the positivities of the canonical bundle.

On the other hand, the positivities of the canonical bundle are closely
related to the curvatures of the (possibly singular) pseudo-volume form. Here
we note that the inverse of the pseudo-volume form can be regarded as a
singular Hermitian metric on the canonical bundle.

Therefore to gain the positivity of the canonical bundle, it is the most
natural and direct way to study the curvature of these pseudo-volume forms
defining the measure hyperbolicities.
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Among the precedent results about a relation between the measure hy-
perbolicities and the positivities of the canonical bundle, the following is very
famous:

Theorem 1.1. (Kobayashi-Ochiai [17]) Every projective manifold of general
type is Kobayashi measure hyperbolic.

Moreover the converse of this theorem is conjectured by S. Kobayashi.

Conjecture 1. Every Kobayashi measure hyperbolic projective manifold is
of general type.

This conjecture is shown to be true in the 2-dimensional case by using the
Kodaira-Enriques classification of complex projective surfaces ([14], [19]).

As regards the curvatures of the intrinsic objects, the metric case is al-
ready known.

Theorem 1.2. ([22], [4], [21]) The holomorphic sectional curvature of the
Kobayashi (resp. Carathéodory) pseudo metric is greater (resp. less) than or
equal to −1.

Hence one of our aims is to obtain a volume version of this theorem, and we
discuss the Carathéodory pseudo-volume form version in Section 2. Then we
have the following:

Theorem 1.3. ([15]) The curvature of the Carathéodory pseudo-volume form
vCX of a complex manifold X is bounded above by −1, and its curvature current
is strictly positive outside its zero locus.

Thanks to Theorem 1.3, we can see that Carathéodory measure hyperbol-
icity implies the positivity of the canonical bundle KX of a compact complex
manifold X.

Corollary 1.1. ([15]) Let X be a compact normal complex space and X̃ its
universal covering space.

Then we have

vol(KX) ≥ n!(n+ 1)n

(4π)n
µC
X̃

(X),

where µC
X̃

is the Carathéodory measure on X̃ and considered as on X. Espe-

cially, if X̃ is Carathéodory measure hyperbolic, then X is of general type.
If X is smooth and X̃ is strongly Carathéodory measure hyperbolic, then

X is projective algebraic with the ample canonical bundle.

2



To investigate the positivities of the canonical bundle in the analytic
fashion, one of standard ways is an analysis of the Bergman kernel. Moreover
we should emphasize that the Carathéodory pseudo-volume form and the
Bergman kernel form are intrinsic, that is, they depend only on the complex
structure of X. Thanks to Theorem 1.3, we can also see that Carathéodory
measure hyperbolicity, i.e., the positivity of the Carathéodory pseudo-volume
form implies both the positivities of the Bergman kernel form and metric.

Theorem 1.4. Assume that X is a Carathéodory measure hyperbolic man-
ifold with a smooth compact quotient. Then the Bergman kernel form is
positive and the Bergman metric is strictly positive on the open set where the
Carathéodory pseudo-volume form vCX is positive.

The restricted version of the above considerations is also observed in
Section 3, and the analogous statement is shown to hold.

Finally we mainly investigate Carathéodory measure hyperbolicity so far.
It is because Carathéodory measure hyperbolicity and the pseudo-volume
form are simpler to treat and these structures are more rich than Kobayashi’s
ones. Regarding the curvature of the Kobayashi pseudo-volume form, the
following is conjectured by H. Tsuji.

Conjecture 2. (H. Tsuji) The curvature current of the Kobayashi pseudo-
volume form is positive over a projective manifold with the ample canonical
bundle.

2 Carathéodory measure hyperbolicity

and positivity of canonical bundle

Let X be a connected paracompact complex manifold in this paper unless
further notice. At first, we recall the definitions of the Carathéodory pseudo-
volume form and measure:

Definition 2.1. ([22]) The Carathéodory pseudo-volume form vCX on a com-
plex manifold X is defined by setting

vCX := sup{f ∗v1 ; f ∈ Hol(X,Bn)},

where v1 = 2n(1− |z|2)−(n+1)
∧n
α=1 dz

α ∧ dzα is the Poincaré volume form on
the n-dimensional complex ball Bn and Hol(X,Bn) is the space consisting of
all holomorphic mappings from X to Bn.
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When X is a normal complex space, the Carathéodory measure on X is
defined as follows: for each Borel set B ⊂ X, we put

µCX(B) := sup

{
∞∑
i=1

µ1(fi(Bi)) ; fi ∈ Hol(X,Bn) (i ∈ N) and

(Bi)i∈N : mutually disjoint Borel sets of X s.t.
∞⋃
i=1

Bi = B

}
,

where µ1 denotes the measure on Bn with v1 as its density.

The definition of Carathéodory measure hyperbolicity is given as follows:

Definition 2.2. A normal complex space X is said to be Carathéodory mea-
sure hyperbolic if µCX is nontrivial.

A complex manifold X is said to be strongly Carathéodory measure hy-
perbolic if vCX is positive everywhere.

When X is normal, we denote by Xreg the regular set of X. Then it follows
that µCX = 1Xregv

C
Xreg

by the extension of bounded holomorphic functions.
Here 1Xreg is the characteristic function of Xreg.

One of important properties of the Carathéodory pseudo-volume form
is the volume decreasing property which is a generalization of the Schwarz
lemma:

Theorem 2.1. For every holomorphic map f : X → Y between n-dimensional
complex manifolds, we have

f ∗µCY ≤ µCX .

Especially the Carathéodory pseudo-volume form and measure are biholomor-
phically invariant.

Moreover since Bn is homogeneous, we can express the definition formula
of vCX by the Ascoli-Arzelà theorem as follows: for any x ∈ X, there exists
fx ∈ Hol(X,Bn) with fx(x) = o such that

(vCX)x = sup{(f ∗v1)x : f ∈ Hol(X,Bn), f(x) = o} = (f ∗xv1)x.

Therefore the pseudo-volume form is continuous on X. Here we set a closed
analytic subset Z(vCX) := {x ∈ X ; (vCX)x = 0} of X.

Next we define the curvature for a pseudo-volume form v on X such that
its curvature current Θv−1 =

√
−1∂∂ log v is positive. Here we regard v−1 as

a singular Hermitian metric on the canonical bundle KX of X. Then it can be
seen that Θv−1 becomes the (1, 1)-form with the Radon measure coefficients.
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Definition 2.3. ([15]) For a pseudo-volume form v on X such that its cur-
vature current Θv−1 is positive, we define the curvature Kv by setting

Kv := − 2n

(n+ 1)nn!

(
√
−1∂∂ log v)nac

v
,

where “ac” means the absolutely continuous part of the Lebesgue decompo-
sition of

√
−1∂∂ log v with respect to the Lebesgue measure.

Note that we can easily observe that Θ
(vCX)

−1 =
√
−1∂∂ log vCX is positive,

and thus that the curvature KvCX
of vCX makes sense. In this formulation, we

rewrite the statement of Theorem 1.3.

Theorem 2.2. We have
KvCX

≤ −1

and
Θ

(vCX)
−1 > 0 on X \ Z(vCX).

This theorem is proved as follows: the first statement is obtained as we
apply the next key lemma to

Tk :=
√
−1∂∂ log vCk

for the approximating sequence

vCk := sup
i=1,··· ,k

f ∗xiv1, k ∈ N

of vCX , where {xk}k∈N ⊂ X is a dense subset of X.

Lemma 2.1 ([2]). Let (Tk)k∈N, T are positive (1, 1)-currents on X. If Tk
k→∞
−⇀

T, we have (Tac)
n ≥ lim infk→∞(Tk)

n
ac.

Moreover we use the simple fact that
√
−1∂∂ log f ∗xv1 ≥ f ∗x

√
−1∂∂ log v1.

The second statement follows because
√
−1∂∂ log f ∗xv1 is uniformly strictly

positive with respect to x ∈ K for any compact K ⊂ X \ Z(vCX). This is
because vCX is continuous.

Second, we prove Corollary 1.1. First of all, we recall the definition of the
volume of the canonical bundle KX of a compact normal complex space X:

vol(KX) := lim sup
m→∞

n!
h0(mKX)

mn
.

As regards the first part of this corollary, the singular case reduces to the
smooth case by the resolution of singularities of X and the normality of X.
We combine the first part of Theorem 1.3 with a formula for the volume of
a line bundle L by Boucksom and Popovici:
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Theorem 2.3. ([2], [20]) Let X be a compact complex manifold and L a
holomorphic line bundle over X. Then we have

vol(L) = sup

{∫
X

T nac ; T ∈ c1(L) is a positive (1, 1)-current

}
.

We will apply this result with L = KX . Note that the Carathéodory pseudo-
volume form vC

X̃
of the universal covering X̃ on X is biholomorphically in-

variant. Thus, we can regard (vC
X̃

)−1 as a singular Hermitian metric on KX .
Hence we can take T = (2π)−1Θ(vC

X̃
)−1 ∈ c1(KX) in Theorem 2.3. From first

part of Theorem 1.3, we conclude that

vol(KX) ≥
∫
X

(
1

2π

√
−1∂∂ log vC

X̃

)n
ac

≥ n!(n+ 1)n

(4π)n
volvC

X̃
(X).

To prove the second part of this corollary, we apply Richberg’s regular-
ization technique ([6]) to the continuous strictly plurisubharmonic function
log vC

X̃
. We use this to regularize the singular Hermitian metric (vC

X̃
)−1 while

keeping the strict positivity of the curvature current. Hence we get a smooth
Hermitian metric on KX that has the strictly positive curvature form on X.
By Kodaira’s embedding theorem, X turns out to be a projective algebraic
manifold with ample KX .

Finally, we prove Theorem 1.4. We denote by

(α, β) :=
√
−1

n2
∫
X

α ∧ β

the Hermitian inner product of two (n, 0)-forms α, β. Recall the definitions
of the Bergman kernel and metric:

Definition 2.4. Let {αi}∞i=0 be a complete orthonormal system of the Hilbert
space L2(Ωn

X) consisting of the holomorphic n-form α satisfying ‖α‖2 =
(α, α) <∞. The Bergman kernel vBX on X is defined by

vBX :=
∞∑
i=0

√
−1

n2

αi ∧ αi = sup
α∈L2(Ωn

X), ‖α‖=1

√
−1

n2

α ∧ α.

The pseudo-metric associated to the curvature form Θ(vBX)−1 of the singular

Hermitian metric (vBX)−1 as the fundamental (1, 1)-form is called the Bergman
pseudo-metric on X. When Θ(vBX)−1 is nondegenerate on X, we call it the
Bergman metric on X.
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To prove Theorem 1.4, we start by using some L2 estimate for the ∂
operator in order to construct the suitable elements in L2(Ωn

X) by following
Chen [5].

By the hypothesis, X covers a compact complex manifold Y and let π :
X → Y be the covering map. We can consider vCX as defined on Y . We
proceed to construct the weight function and the complete Kähler domain in
X to set up the suitable L2 space in order to use the L2 estimate for the ∂
operator.

First we construct the weight function. Let {xi}i∈N ⊂ X be a countable
dense subset such that

X \ Z(vCX) =
∞⋃
i=1

(
df 1
xi
∧ df 2

xi
∧ · · · ∧ dfnxi 6= 0

)
for fxi = (f 1

xi
, . . . , fnxi) ∈ Hol(X,Bn). Consider the smooth and bounded

plurisubharmonic function

φ := log

(
1 +

∞∑
i=1

1

2i
‖fxi‖2

)
,

where ‖fxi‖2 :=
∑n

j=1 |f jxi |
2 < 1. In fact, it can be easily seen that

Lemma 2.2. φ is strictly plurisubharmonic on X \ Z(vCX).

Second, we construct a complete Kähler domain in X. The hypothesis
that X is Carathéodory measure hyperbolic implies that Y is of general type
by Corollary 1.1. Hence Moishezon’s theorem implies that there exists a
projective manifold Y ′ obtained after finitely many blow-ups σY : Y ′ → Y

along smooth centers. Then we have a Galois covering X ′
π′−→ Y ′ of Y ′ such

that the commutative diagram

X ′
σX−→ X

π′ ↓ � ↓ π
Y ′

σY−→ Y

holds. By the biholomorphic invariance and continuity of the Carathéodory
pseudo-volume form and the diagram, we have σX

∗vCX = vCX′ . We can denote
Z(vCX′) = E ∪ σ−1

X (Z(vCX)) for some proper analytic subset E of X and the
analytic subset S = σX(E) of X satisfies

σX : X ′ \ Z(vCX′)
∼→ X \

(
S ∪ Z(vCX)

)
(1)
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is a biholomorphism.
By this biholomorphism, the domain D := X \

(
S ∪ Z(vCX)

)
is the desired

complete Kähler domain in X since X ′ \ ZC
X′ has a complete Kähler metric.

This follows by a similar way to Demailly [9, p.471, Lemma 7.2] because Y ′

is compact Kähler.
To complete the proof, we use the next result by Chen in [5] applied to

the complete Kähler manifold D:

Proposition 2.1. ([5]) Let (M,ωM) be a complete Kähler manifold. Suppose
that there exists a bounded smooth strictly plurisubharmonic function φ on
M . Then M possesses a Bergman kenel and metric.

This proposition directly implies the existence of the Bergman kernel and
metric on D = X \

(
S ∪ Z(vCX)

)
. In regard to the existence on X \Z(vCX), we

observe that the proof of Proposition 2.1 turns out to be applicable to every
point in S \Z(vCX) since the φ constructed above is strictly plurisubharmonic
there. The existence of the Bergman kernel and of the Bergman metric on
X \ Z(vCX) follows.

3 Restricted Carathéodory measure

and restricted volume of canonical bundle

In this section, we consider the restricted version of Corollary 1.1. The
restricted version of the volume, so called the restricted volume, of a line
bundle L over a compact complex manifold X is a useful tool for extending
sections from a subvariety to an ambient space. And so various properties
and applications of the notion are obtained (see [10], [18], [12]). Its precise
definition are given by the following way: let L be a line bundle over a com-
pact complex manifold X and Z its d-dimensional irreducible closed complex
subspace. Denote by ι : Z ↪→ X the inclusion map. We consider the spaces

H0(X|Z,O(mL)) := Im[ι∗ : H0(X,O(mL))→ H0(Z,OZ(mL))]

for all m ∈ N. Then the restricted volume volX|Z(L) of L to Z is defined as

volX|Z(L) := lim sup
m→∞

dimH0(X|Z,O(mL))

md/d!
,

which measures the asymptotic growth of these spaces.
On the other hand, as far as I know, the essential notion of the restricted

version of the Carathéodory pseudo-volume form first appears in [11]. How-
ever it is not very easily comprehensible, and so we give the straightforward
definition to compare with the restricted volume of the canonical bundle.
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Henceforth, let X be an n-dimensional connected paracompact complex
manifold and Z its d-dimensional irreducible subvariety which is possibly not
closed unless further notice.

Definition 3.1. When Z is smooth, the restricted Carathéodory pseudo-
volume form vCX|Z on Z is defined by setting

vCX|Z := sup

{
(f |Z)∗

(
2d

d!(n+ 1)d
(
√
−1∂∂ log v1)d

)
; f ∈ Hol(X,Bn)

}
.

We remark several points about this definition. First, in the case Z = X,
since 2n/n!(n+ 1)n× (

√
−1∂∂ log v1)n = v1, we have vCX|X = vCX . Second, we

choose not 2d/d!(d + 1)d but 2d/d!(n + 1)d as a normalized constant in the
definition ( if we choose the other, we also have vCX|X = vCX ). The reason is
that if X = Bn, and Y is a standard d-dimensional complex ball in Bn, for
instance Y = Bd = {t ∈ Bn ; td+1 = · · · = tn = 0}, vCBn|Bd is the Poincaré

volume form on the d-dimensional complex ball Bd.
This definition is formulated to be able to obtain a restricted version

of the comparison between the volume of the canonical bundle and the
Carathéodory total volume, and it works well. But to calculate its cur-
vature, we cannot simply use the formulation of the restricted version, and
so we rewrite the formula (this is the one given in [11]):

Proposition 3.1. ([11]) For any smooth Z, we have

vCX|Z = sup
{

(f |Z)∗v
(d)
1 ; f ∈ Hol(X,Bd)

}
,

where v
(d)
1 is the Poincaré volume form on Bd.

This proposition suggests that we can define a global version of the re-
stricted Carathéodory pseudo-volume form in the following fashion ([11]):

Definition 3.2. ([11]) The restricted Carathéodory measure µCX|Z on Z is
defined as follows: for each Borel set B ⊂ Z, we put

µCX|Z(B) := sup

{
∞∑
i=1

µ
(d)
1 (fi(Bi)) ; fi ∈ Hol(X,Bd) (i ∈ N) and

(Bi)i∈N : mutually disjoint Borel sets of Z s.t.
∞⋃
i=1

Bi = B

}
,

where µ
(d)
1 denotes the measure on Bd with v

(d)
1 as its density.
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Furthermore, we introduce some of the basic properties of the restricted
Carathéodory pseudo-volume form. All properties introduced here are ones
which the original Carathéodory pseudo-volume form also has ([16]). First,
by a similar reason to the original Carathéodory pseudo-volume form, we
have

Proposition 3.2. ([11])

1Zregv
C
X|Zreg

= µCX|Z .

Since Bn is homogeneous, we can express the definition formula of vCX|Z by the

Ascoli-Arzelà theorem as follows: for any x ∈ Z, there exists fx ∈ Hol(X,Bn)
with fx(x) = o such that

(vCX|Z)x= sup
f(x)=o

{
(f |Z)∗

(
2d

d!(n+ 1)d
(
√
−1∂∂ log v1)d

)
x

}
= (fx|Z)∗

(
2d

d!(n+ 1)d
(
√
−1∂∂ log v1)d

)
x

.

Therefore the pseudo-volume form is continuous on Z. Here we set a closed
analytic subset Z(vCX|Z) := {x ∈ Z ; (vCX|Z)x = 0} of Z.

A property of the restricted Carathéodory pseudo-volume form corre-
sponding to the volume-decreasing property of the Carathéodory pseudo-
volume form is the following:

Proposition 3.3. Let Y be an n-dimensional complex manifold, and W its
d-dimensional irreducible complex subvariety. Then for all f ∈ Hol(X, Y )
such that f(Z) ⊂ W , we have

f ∗µCY |W ≤ µCX|Z .

In particular, vCX|Z and µCX|Z are invariant by holomorphic automorphisms of
X preserving Z.

We begin to prove the restricted version of Corollary 1.1. We make its
explicit statement.

Theorem 3.1. Let X be an n-dimensional compact complex manifold and
Z its d-dimensional irreducible closed subvariety. Take any Galois cover
X̃

p−→ X, and denote by Z̃ the pull-back of Z by p. Suppose that Z̃ 6⊂ Z(vC
X̃

).
Then we have

volX|Z(KX) ≥ d!(n+ 1)d

(4π)d
µC
X̃|Z̃(Z).
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In fact, we note that X is Moishezon because of the assumption Z(vC
X̃

) 6=
∅, and so a simple observation leads that the non-projective case reduces
to the projective case by Moishezon’s theorem and the Riemann extension
theorem. A key of the proof of Theorem 3.1 is the following inequalities:

Theorem 3.2. Let X be an n-dimensional complex manifold and Z its d-
dimensional closed submanifold not contained in Z(vCX). Then we have the
following inequality on Z:(

Θ(vCX)−1|Z
)d

ac
=
(√
−1∂∂ log vCX |Z

)d
ac
≥ d!(n+ 1)d

2d
vCX|Z . (2)

Moreover suppose that X has a smooth compact projective quotient and Z is
invariant under the deck transformation. Then we have〈(

Θ(vCX)−1 |Z
)d〉

=
〈(√
−1∂∂ log vCX |Z

)d〉 ≥ d!(n+ 1)d

2d
vCX|Z , (3)

where 〈·〉 means the non-pluripolar Monge-Ampère product.

Proof of Theorem 3.2. The proof of (2) is almost the same as the one of
Theroem 1.3 and so we omit the detail here.

Next we prove (3). First note that we certainly suppose that the com-
pact quotient is projective, and more that vCX is an invariant and continu-
ous pseudo-volume form with an invariant analytic subset Z(vCX). So it is
known ([3]) that the non-pluripolar product of the restriction Θ(vCX)−1 |Z =√
−1∂∂ log

(
vCX |Z

)
to Z of the curvature current Θ(vCX)−1 is well-defined and is

merely the zero extension to Z of the product
(
1Z\Z(vCX)

√
−1∂∂ log

(
vCX |Z

))d
on Z \ Z(vCX) due to Bedford-Taylor. Therefore we can easily observe that
over Z 〈(√

−1∂∂ log
(
vCX |Z

))d〉 ≥ (√−1∂∂ log
(
vCX |Z

))d
ac
,

which by (2) implies the inequality (3) which we want. Indeed, we have to
prove this inequality only locally on Z \ Z(vCX) in which〈(√

−1∂∂ log
(
vCX |Z

))d〉
=
(√
−1∂∂ log

(
vCX |Z

))d
by the above remark. For a standard regularization kernel (ρε)ε>0, we have
locally (√

−1∂∂ log
(
vCX |Z

)
∗ ρε
)d ε→0
−−−⇀

(√
−1∂∂ log

(
vCX |Z

))d
,
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and we also have locally(√
−1∂∂ log

(
vCX |Z

)
∗ ρε
)d ε→0
−−−→

(√
−1∂∂ log

(
vCX |Z

))d
ac

a.e.

by Lebesgue’s theorem. Therefore by Fatou’s lemma, we obtain(√
−1∂∂ log

(
vCX |Z

))d ≥ (√−1∂∂ log
(
vCX |Z

))d
ac
.

We complete the proof of Theorem 3.2.

As for Theorem 3.1, this is directly obtained by another expression for-
mula of the restricted volume with respect to the non-pluripolar product due
to Hisamoto ([12]) and Matsumura ([18]) besides Theorem 3.2.

Theorem 3.3. Let X be an n-dimensional projective manifold, L a big line
bundle over X and Z a d-dimensional closed irreducible subvariety of X.
Furthermore suppose that Z 6⊂ B+(L). Then we have

volX|Z(L) = sup
T

∫
Zreg

〈(T |Zreg)
d〉,

where T runs though all positive T ∈ c1(L) which have small unbounded loci
and whose unbounded loci do not contain Z.

Here an analytic subset B+(L) of X is defined as

B+(L) =

x ∈ X;

there is no singular Hermitian metric h on L

such that h : smooth around x

Θh : strictly positive on X

 ,

which is called the augmented base locus of L. Furthermore, the unbounded
locus of a positive T ∈ c1(L) is the unbounded locus of its potential, and
such T has a small unbounded locus if and only if its unbounded locus is
contained in certain analytic subset of X.

Proof of Theorem 3.1. In the situation of Theorem 3.1, the unbounded locus
of the curvature current

√
−1∂∂ log vC

X̃
is Z(vC

X̃
). Moreover, Z is not contained

in the augmented base locus B+(KX) of the canonical bundle KX since we
have

Lemma 3.1.
B+(KX) ⊂ Z(vC

X̃
).
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This is proved by the standard L2 estimates for the ∂ operator as follows
([7]). It is sufficient to show that for any point x 6∈ Zero(vC

X̃
) and a smooth

sufficiently ample divisor H not containing x, there exists a global section of
(m+ 1)KX −H nonvanishing at x for a sufficiently large m ∈ N. Indeed, we
consider the singular hermitian metric (vC

X̃
)−m on K⊗mX over a Stein manifold

X \ H and note that its curvature current satisfies the positivity property
stated in the latter of Theorem 2.2. Then by the L2 estimate, we find a
holomorphic section of (m+1)KX nonvanishing at x and vanishing along H,
which is required.

Therefore 1
2π

Θ(vC
X̃

)−1 and Z satisfy the hypothesis of T and Z in Theo-

rem 3.3, respectively. Finally we conclude by (3) of Theorem 3.2 that

volX|Z(KX) ≥
∫
Zreg

〈(
1

2π
Θ(vC

X̃
)−1|Zreg

)d〉
≥ d!(n+ 1)d

(4π)d
µC
X̃|Z̃(Z).

We remark that we can construct a counterexample to the volume com-
parison when the condition Z̃ 6⊂ Zero(vC

X̃
) is removed. Let C be a smooth

projective curve whose genus is greater than 1, p ∈ C and ϕ : X → C3 the
blow-up of the smooth 3-fold C3 = C×C×C along C = C× p× p. We take
the closed curve Z ⊂ X in the exceptional divisor E = ϕ−1(C) = C×P1 of ϕ
which is defined as Z = C×(1 : 0) ⊂ C×P1, and put Z̃ = π−1(Z) ⊂ X̃ which
is regarded as a countably disjoint union of the unit disk ∆. Then we can
have vC

X̃|Z̃ = v1 on any connected component ∆ of Z̃, and volX|Z(KX) = 0.

As a consequence, the volume comparison like Theorem 3.1 surely fails for
this X and Z.

Finally, we state the proposition about the curvature of the restricted
Carathéodory pseudo-volume from, which is a generalization of Theorem 1.3.
The proof is completely the same as Theorem 1.3 by using Proposition 3.1,
the reformulation of the restricted Carathéodory pseudo-volume form.

Proposition 3.4. For smooth Z, we have

KvC
X|Z
≤ −1

and √
−1∂∂ log vCX|Z > 0 on Z \ Z(vCX|Z).
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