TROPICAL NEVANLINNA THEORY IN A SINGLE VARIABLE

ILPO LAINE AND KAZUYA TOHGE

ABSTRACT. Tropical Nevanlinna theory describes value distribution of continuous piecewise linear func-
tions of a real variable with arbitrary real slopes, called tropical meromorphic functions, similarly as
meromorphic functions are described in the classical Nevanlinna theory. In two previous papers, due to
Halburd and Southall, resp. to Laine and Yang, integer slopes only had been permitted. We show that
basic results of tropical Nevanlinna theory given in these two papers continue to be valid in the extended
setting as well. In this talk, we present a tropical version of the second main theorem reminiscent to the
corresponding result in the classical Nevanlinna theory. If time permits, we try to observe a possibility
for Tropical Nevanlinna theory in an open interval on the real line, which corresponds to the classical
Nevanlinna theory in an annulus or a disk, or else on the whole plane.

1. Introduction

Tropical Nevanlinna theory, see [7], describes value distribution of continuous piecewise linear functions
of a real variable whose one-sided derivatives are integers at every point, similarly as meromorphic
functions are described in the classical Nevanlinna theory [1], [8], [10]. In this talk, following [11], we
take an extended point of view to tropical meromorphic functions by dispensing with the requirement of
integer one-sided derivatives. Accepting that multiplicities of poles, resp. roots, may be arbitrary real
numbers instead of being integers, resp. rationals, as in the classical theory of (complex) meromorphic
functions, resp. of algebroid functions, it appears that previous results such as in [7], [12], continue to be
valid, with slight modifications only in the proofs.

Recalling the standard one-dimensional tropical framework, we shall consider a max-plus semi-ring en-
dowing R_., := RU {—o0} with tropical addition

x @y = max(z,y)
and tropical multiplication
rTRY = +y.

We also use the notations z @y := z —y and %% := ax, for € R. The neutral elements for the tropical
operations are 0, = —oo for addition and 1, = 0 for multiplication. We note that 1, &« = max(z,0) and
0, ®x = 0, for any € R. Observe that such a structure is not a ring, since not all elements have tropical
additive inverses. For a general background concerning tropical mathematics, see [15], for example.

Concerning meromorphic functions in the tropical setting, and their elementary Nevanlinna theory, see
the recent paper by Halburd and Southall [7] as well as [12] and [11] for certain additional developments.

Definition 1.1 ([11]). A continuous piecewise linear function : R — R is said to be tropical meromorphic.

Remarks. (1) In [7] and [12], for a continuous piecewise linear function f : R — R to be tropical
meromorphic, an additional requirement had been imposed upon that both one-sided derivatives of f
were integers at each point z € R. In our paper [11], this additional requirement has been removed.
Indeed, the authors are grateful to Prof. Aimo Hinkkanen for the idea of permitting real slopes in the
definition of tropical meromorphic functions. A similar idea may be found in [7], p. 900, too.

(2) Observe that whenever f : R — R is a continuous piecewise linear function, then the discontinuities
of f’, see below, have no limit points in R.
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A point x of derivative discontinuity of a tropical meromorphic function such that
= i ! — f(x—
wpl@) = tim (f'(x+e) ~ fz—e) <0

is said to be a pole of f of multiplicity —wy(z), while if ws(x) > 0, then z is called a root (or a zero-point)
of f of multiplicity ws(x). Observe that the multiplicity may be any nonnegative real number, to be
denoted as 7¢(x) in what follows.

The basic notions of the Nevanlinna theory are now easily set up similarly as in [7] (See [11]):

The tropical proximity function for tropical meromorphic functions is defined as

m(r, ) = 5 (F* () + £+ (=) (1)

where f*(z) := max{f(z),0}. Denoting by n(r, f) the number of distinct poles of f in the interval
(—r,r), each pole multiplied by its multiplicity 77, the tropical counting function for the poles in (—r,r)
is defined as

N g) =g [ nte =3 3 w0 ). (1.2

0 [b|<r

Defining then the tropical characteristic function T'(r, f) as usual,

T(va) = m(r,f)—l—N(r,f), (13)

the tropical Poisson—Jensen formula, see [7], p. 5-6, to be proved below, readily implies the tropical
Jensen formula

T(’I“, f) - T(Tv _f) = f(O) (14)

as a special case.

In this talk, we first recall basic results of Nevanlinna theory for tropical meromorphic functions, closely
relying to what has been made in [7] by Halburd and Southall. As a novel element, not being included
in [7], we propose a result that might be called the tropical second main theorem in [11].

2. POISSON—JENSEN FORMULA IN THE TROPICAL SETTING

In what follows in this paper, a meromorphic function f is to be understood in the sense of Definition 1.1,
unless otherwise specified. We may also call f to be restricted meromorphic, whenever all of its one-sided
derivatives (slopes) are integers.

The Poisson—Jensen formula in the extended tropical setting is formally as in the restricted meromorphic
case, see [7], Lemma 3.1. The same proof applies, but we however recall a complete proof here.

Theorem 2.1 ([7, 11]). Suppose f is a meromorphic function on [—r,r], for some r > 0 and denote the
distinct roots, resp. poles, of f in this interval by a,, resp. by b,, with their corresponding multiplicities
Tr attached. Then for any x € (—r,r) we get the Poisson-Jensen formula

fy = LOEIED LT ) g -
_% (@) (r® = lay — xlr — a,x) + % > 7)) = by — zlr = bya),
la,|<r by |<r

In the particular case of x = 0 we obtain the tropical Jensen formula

o = MO S @ la) g Y )~ b,

lay|<r b, | <7

Proof. As in [7], we define an increasing sequence (¢;j),j = —p,...,¢ in (—r,7) in the following way. Let
¢o = x, and let the other points in this sequence be the points in (—r,r) at which the derivative of f
does not exist, i.e. f has either a root or a pole at these points. Further, we denote by m; slopes of the
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line segments in the graph of f. In particular, we define m;_; :=lim_ - f'(z) for j = —p,...,0, resp.
mjy :=1lim__ + f'(x) for j =0,...,¢. Elementary geometric observatlon implies
J
fr)=f(z) = mi(er —x) +ma(ca —c1) + - +mylcg — cg—1) + Mgi1(r — ¢q)

= —myz+ mq+1r +eci(mi —ma) + -+ cq(mg — mgy1)

= (r—x) Z —mjy1)(r — ¢j).

j=1
By a parallel reasoning,
P
F@) = f=r) = m_a(r+2) = S m_yos —m_)(r +ey).
j=1
Multiplying the above two equalities by (r 4+ x) and (r — z), respectively, and subtracting, we obtain

2rf(z) = r(f(r)+ f(=r) +2(f(r) = F(=7) + (m_1 —m1)(r* = )

+Z(m—j—1 —m_j)(r® = (x —c_j)r — c_jz) +

a
—|—Z —mjp1)(r? — (¢; — x)r — ¢;x)
Jj=1

= r(f) + F) +x(F) = f(=) + Y —wp(e)(r® = e —alr — cja).

cj
Recalling the definition of the multiplicity 7; for roots and poles of f, the claim is an immediate conse-
quence of this equality. O

3. BAsic NEVANLINNA THEORY IN THE TROPICAL SETTING

It is verified in [11] that several basic inequalities, see [7], for the proximity function and the character-
istic function hold in our present setting as well . In particular, the following simple observations are
immediately proved by the corresponding definitions:

Lemma 3.1. Let f and g be tropical meromorphic .
(i) If f < g, then m(r, ) < m(r,g).
(ii) Given a positive real number o, we see that
&(r, [9%) = &(r,af) = ak(r, f)
holds for each & = m, N, T and for any value of r.
(iii) Each function & = m, N, T satisfies
(r,f@g) < &(r f)+ &(rg),

for any value of r.

Remark. Observe that whenever f < g, the inequality N(r, f) < N(r,g) is not necessarily true.
Similarly, the inequality

N(r,fe®g) = N(r, max(f,g)) < maX(N(r7 ), N(r, g))

may fail. Indeed, as for the case f < g, take f, g satisfying this inequality so that the graph of f is constant
outside of [—1,1] and is M-shaped in [—1,1], and let g be defined correspondingly as A-shaped. Then f
has two poles, while g has only one. If the slopes are suitably defined, then N(r, f) > N(r,g). As for
the case of max(f, g), a corresponding example is easily constructed. The corresponding observations are
true for the characteristic function as well, provided just that the proximity functions are small enough.

As usual in the Nevanlinna theory, the next step from the Poisson—Jensen formula is to formulate the
first main theorem. To this end, we recall the notation L(f) := inf{f(b)} over all poles b of f on R, i.e.
L(f) :=1inf{f(b) : ws(b) < 0,b € R}.

In particular, if f has no poles (and so f is said to be tropical entire), then we have L(f) = inf § = +o0.
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Theorem 3.2. Let f be tropical meromorphic. Then
T(r, l.o(f® a)) = T(r, — max(f, a))
< T(r f)—N(r|f2a)+max(a,0)—max(f(0),a)

for any a € R and any value of r.
Moreover, an asymptotic equality

T(r,lo@(f®a) = T(r,—max(f, a))
= T(r,f) = N(r|f>a)—max(f(0),a) +&(r,a)

holds with 0 < (r,a) < max(a,0) for each r. Here we denote

N(r|f>a):=N(r,f) = N(r,max(f,a))
which is always non-negative for each a € R and vanishes identically when —oo < a < L(f) or when
L(f) = +o0.
Proof. Making use of the tropical Jensen formula (1.4), we immediately conclude

T(r, leo(f® a)) = T(T7 — max(f, a))

T(’F, max(f, a)) - max(f(()), a)
T(r,f)— N(r|f > a)+ max(a,0) — max(f(()),a)
for any a € R and for any r. Here, together with

N(r,max(f,a)) = N(r,f) — N(r|f>a),
we used the inequality m(r, g®h) = m(r, max(g, h)) < m(r,g)+m(r,h) and the simple estimate T'(r,a) =

max(a, 0). Note that max(a,0) — max(f(0),a) < |a| holds.
Then we can obtain the asserted asymptotic equality in the following way:

T(rle@(f®a)) = T(r,—max(f,a))
= T(r max(f,a ) max( ,a)
m(,max f,a ) + N(r max(f, a)) — max(f(()),a)

IN

= m(r,f)+ N(r.f) = N(r| f = a) - max(f(0),a)
> T(r,f) = N(r|f > a) — max(f(0),a),
according to the monotonicity of m(r, e), Lemma 3.1, with respect to the second component e. O

Example. As an example, for a non-constant linear function f(z) = ax + 8 with a > 0 and § > 0, say,
it immediately follows that

r<8
T(r,f):m(r,f):{ grﬁ_ﬁ E%i r)< «)

It is a simple exercise to verify by this example that the error term (r, a) in Theorem 3.2, may run over
the whole interval [0, max(f(0),a)).

We next proceed to recall

Theorem 3.3 ([7, 11]). The characteristic function T(r, f) is a non-negative, continuous, non-decreasing
piecewise linear function of r.

Proof. The proof offered in [7], p. 894, applies verbatim. O

Remark. (1) The counting function N(r, f) is a positive, continuous, non-decreasing piecewise linear
function of r as well.

(2) In particular, Theorem 3.3 and Remark (1) above imply that standard Borel type theorems apply for
T(r, f) and N(r, f), see e.g. [7], Lemma 3.5.

(3) As a remark for further needs, the following estimate, see [7], remains valid in the present setting as
well: Indeed, for all £ > 1,
2

“(T,f)ﬁm

N(kr, f).
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Moreover, given € > 0, R > 0 and combining this estimate and a Borel type lemma, we get
n(r, f) <4r='N(r, f)*°
for all r > R outside an exceptional set of finite logarithmic measure, see [7], Theorem 3.6.

(4) Defining a tropical rational function as a meromorphic function on R that has finitely many poles and
roots only, the first estimate in (3) above may be used to show that a meromorphic function is rational
if and only if T'(r, f) = O(r), see [7], Theorem 3.4.

Following the usual classical notion, a meromorphic function f is said to be of finite order of growth, if
T(r, f) < r° for some positive number o, and for all r sufficiently large. Of course, this enables us to
define the order p(f) of a meromorphic function f in the usual way as

logT
o(f) = Timsup 28T S
r—00 IOgT

For example, we see easily the following
Proposition 3.4. For any ¢ € R, we have N(r,z%°) =0 and
T(r,z%°) = m(r,2%°) = %7’ (r>0) thus p(z®°)=1.
Proposition 3.5. Any non-constant tropical periodic meromorphic function f satisfies T(r, f) < kr? for
some k > 0, hence p(f) = 2.

In the finite order case, the characteristic function and the counting function of the shifts of meromorphic
functions may be estimated by applying the following lemma, see [9], Lemma 3.2:

Lemma 3.6. Let T : [0,+00) — [0,+00) be a non-decreasing continuous function of finite order p and
take ¢ € (0,400). Then, given € > 0, we have

T(r+c¢)=T()+ O(r"*HE)
outside of a set of finite logarithmic measure.

Moreover, the estimates given in Remark (3) above, may be modified in the finite order situation as
follows, see [7], Corollary 3.7:

Lemma 3.7 ([11]). Let f be a meromorphic function of finite order, and suppose that 6 <1 and R > 0.
Then n(r, f) <r=ON(r, f) for all * > R outside an exceptional set of finite logarithmic measure.

In classical Nevanlinna theory and its applications, the lemma on logarithmic derivatives plays a funda-
mental role. It is likely that its tropical counterpart below, the lemma on tropical quotients of shifts,
may become equally important:

Theorem 3.8 ([7, 11]). Let f be tropical meromorphic. Then, for any € > 0,
21+<14|c|
<

m(r, f(x+¢) @ f(z)) < T{T(r + lel, £)FFE + o(T(r + |, f))}
holds outside an exceptional set of finite logarithmic measure.
Proof. The proof given for Lemma 3.8 in [7], see p. 897-898, applies word by word. g
Another version of the lemma on tropical quotients of shifts is a tropical counterpart of a discussion in [6]:

Lemma 3.9 ([11]). Let f be tropical meromorphic. Then for all « > 1 and r > 0,

20|e|/ (o —

mlr f(o +0) @ £(@)) < 2D T alr + ) ) +170)1/2)

Proof. Following [7] as in the proof of their Lemma 3.8, by taking p = (a+1)(r+|c|)/2 so that p—r—|c| =
(a = 1)(r+c])/2 and p > r + |¢|, we have

(m(p, ) +m(p,—f))
p

+

3
2

m(r, f(z+c) @ f(2)) < CI{ (n(p»f)Jrn(p,—f))}
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for x € [—r,r|. Since

L palr+e)
N(a(r+|e), £f) > /( n(t, + f)dt

2 J(at1)(r+lel) /2
1 a—1
Z §n(pvif) 9 (T+ ‘CD&
we get
4 1
+)I< ———N +f).
nip, £f) < a—1r+]| (alr +1el), £1)

Since p < a(r+|c]) and 1 < 2(a+1)/(a— 1), we may use the Jensen formula (1.4) to obtain the desired
estimate by a simple computation. O

Corollary 3.10. Let f be a meromorphic function of finite order p. Given € > 0, f satisfies
m(r, f(z +¢) @ f(z)) = O(rP~F)
outside an exceptional set of finite logarithmic measure.
4. TROPICAL MEROMORPHIC FUNCTIONS OF HYPER-ORDER LESS THAN ONE

As pointed out in [6], a number of results in the difference variant of the Nevanlinna theory, see [4],
typically expressed for meromorphic functions of finite order, may also be formulated for meromorphic
functions of hyper-order less than one. As shown in [11], this extension applies to the tropical meromorphic
setting as well. To this end, first recall the definition of hyper-order

. log log T'(r,
p2(f) ::hrnsupig lg ( f)
r—00 ogr

(4.1)

Next recall the following lemma from [6], corresponding, in the case of hyper-order less than one, to our
previous Lemma 3.4:

Lemma 4.1 ([6]). Let T : [0,+00) — [0, +00) be a non-decreasing continuous function and let s € (0, c0).
If the hyper-order of T is less than one, i.e.,

limsup ————= =p2 <1 (4.2)

and 6 € (0,1 — pa) then

T
T(r+5)=T(F) +o ( (’")> (4.3)
where r runs to infinity outside of a set of finite logarithmic measure.

For a proof of this lemma, see [6].

As a counterpart to Corollary 3.10, we may state the following

Proposition 4.2 ([11]). Let f be a meromorphic function of hyper-order ps < 1. For any given § €
(0,1 —p2) and c € R, f salisfies

m(r, f(z +¢) @ f(@)) = o(T(r, f)/r°),
as r approaches to infinity outside of a set of finite logarithmic measure.

Proof. In the finite order case, we have p; = 0, and so ¢ € (0,1). Take 7 € (4,1). By [7], Theorem 3.10,
we have

m(r, f(x +c) @ f(z)) = O(r"T(r, f)).

Therefore,

7“5
m(?‘,f(.%’ + C) %) f(.’L')) T(’/’, f) =0 <T7'1—5> —0

as r approaches to infinity outside of a set of finite logarithmic measure. Therefore, we may assume that
f is of infinite order. The proof for this case follows an idea from Halburd and Korhonen [4]. See also
[6], p. 23-24. We first recall a generalized Borel Lemma as given in [1], Lemma 3.3.1: Let £(x) and ¢(s)
be positive, nondecreasing and continuous functions defined for all sufficiently large x and s, respectively,
and let C > 1. Then we have

(s)

T<S+§(T(57f))7f) <CT(s,f) (4.4)
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for all s outside of a set E satisfying

ds 1 T(R,f) dr
é(s) ~ logC 2@ TP 4,
/Eﬂmm o Sme) oW (45)

where R < oo. Since f is of infinite order and of hyper-order less than 1, then by choosing ¢(r) = r,
&(z) = (logx)!*e for € > 0 and

¢(r + |e])
(r+1eDS(T(r + lel, 1))’

a=1+

in Lemma 3.9, it follows that

14¢
12]¢| (log T(r+ |, f))
m+|c|

m(r f(e+0) @ f(2) < {OT(r Tl )+ 'f“’)} (4.6)

2

as r approaches infinity outside of an r-set of finite logarithmic measure.
We may now fix e > 0 to satisfy 6 =1 — (p2 +£)(1 + €). Then

(log T(r + |¢|, ) °

=0 T c))°
T oD

for all sufficiently large r. Then Lemma 4.1 and the above estimate (4.6) show that
1

3lc
m(r,f(a? +0)© f(z)) < TIT |T(7“, ) =o(T(r, f)/r‘s)
holds as r approaches infinity outside of a set of finite logarithmic measure. O

A tropical hyper-exponential function e, (x) is found as a solution to equation

y(z +1) = y(x)®,

see Section 6 below for its definition and basic properties. This function may be used to point out that
the condition pa(f) < 1 cannot be dropped in general. In fact, we have for o > 1,

m(r,ea(z +1) @eq(2)) = (o — 1)T(r, eq)

on the whole R. Of course, Lemma 3.9 remains true for f(x) = e, (x) as well.

5. SECOND MAIN THEOREM IN THE TROPICAL SETTING

In this section, we offer a tropical counterpart to the second main theorem. Observe, however, that the
second main theorem in the tropical setting may not be as complete as in the usual Nevanlinna theory.
This is due to the fact that certain elementary inequalities in the classical Nevanlinna theory, in particular
those for the counting function, may fail in the tropical theory.

Theorem 5.1 ([11]). Let f be a tropical meromorphic function and put L(f) := inf{f(b) : ws(b) <0, b€
R}. Given ¢ > 0, ¢ € N and q distinct values a; € R (1 < j < q) that satisfy max(ai,...,aq) < L(f),
then

qT(r, f) < ZN(T,lO %) (f@aj)) —|—T(7’,f(z+c)) —N(r,lo @f(x—l—c)) —|—m(r,f(x—|—c) @f(x))—
— fle) + Zmax(f(()), a;) +p11%1]?%(p max(ay,0) + (p — 1) 121]?%(13111&)((0, —ay) (5.1)

holds for all v > 0.
Before proceeding to prove Theorem 5.1, we define

Ni(r.f) = N(r. 1o @ f(x +¢)) +2N(r, f) = N(r. f(z + ). (52)
Clearly, (5.2) is a tropical counterpart to the classical counting function

Ni(r, f) = N(r,1/f) + 2N(r, f) = N(r, f')
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for multiple values of f in the second main theorem for usual meromorphic functions. Using (5.2), we
may write (5.1) as

al(r,f) = T(r, f ZN 7,1, @ (f ®aj)) — Ni(r, f) +2N(r, f)—

— N(r,f(x+c)) —|—m(r,f(x—|—c) %) f(:c)) +0(1). (5.3)

Suppose now that f is of hyper-order po < 1. Applying Lemma 4.1 to T'(r, f) and N(r, f), and recalling
Proposition 4.2 (with 7 > 1 — ps), we obtain

Theorem 5.2 ([11]). Suppose f is a nonconstant tropical meromorphic function of hyper-order p < 1,
and take 0 < 0 < 1 — po. If ¢(> 1) distinct values a1, ..., aq € R satisfy max(a1,...,aq) < L(f), then

(¢—1)T Z (r1o @ (f ®a;)) — N(r, 1o @ f) + o(T(r, f)/r°) (5.4)

outside an exceptional set of finite logarithmic measure.

Proof. The desired inequality immediately follows from Theorem 5.1, combined with Proposition 4.2
and the next three inequalities, each of them being valid outside an exceptional set of finite logarithmic
measure:

T(r,flz+0) < T f)+N(r fla+e) =N, f)+o(T(r, f)/r),
N(r,f(x+c)) < N(r+lel,f)=N(f)+o(T(r,f)/r°)
and
N(rlo@ f(z+c)) > N(r—lc,1c @ f) = N(r, 1o @ ) + o(T(r, f) /7).
These inequalities are immediate consequences of Lemma 4.1. O

Remark. Observe that whenever f is of finite order p, and so of hyper-order ps = 0, the error term
o(T(r, f)/r‘s) in Theorem 5.2 may be replaced by O(r?~17¢) with ¢ > 0. Similarly in Corollary 5.3 below.

Corollary 5.3. Suppose f is a nonconstant tropical meromorphic function of hyper-order ps < 1, and
take 0 < 6 < 1 — pa. If (¢ > 1) distinct values aq,...,aq € R satisfy max(ai,...,aq) < L(f), and if
U(f) =inf{f(a) : ws(a) >0} > —o0, then

EZ (r 16 @ (f ® ay)) + o(T(r, f)/1°) (5.5)

outside an exceptional set of finite logarithmic measure. In particular,
T(r,f) < N(r,1o @ (f ®a)) +o(T(r, f)/r°) (5.6)
holds for all a € R such that a < L(f).

Proof. Let ay,...,aq be ¢ distinct real values such that a; < L(f), 1 < j < ¢. In order to prove the
assertion (5.5), choose a real number p such that

< min{max(al, cee aq),é(f)}
and put
g(x) = f(z)—p, a=a;—p(>0)(1<j<q) and a:=0.
Then the following observations are easily checked:
p2(g9) = p2(f) as well as p(g) = p(f),
g(z) =y (z),
L(g) := nf{g(b) : wy(b) <0} = L(f) — p,

L(g) — max(aog, a1, ..., aq) = L(f) — max(a1,...,aq) >0,
(g) = inf{g(a) : wy(a) >0} = () — > 0.
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We now apply Theorem 5.2 to the function g(x) and the ¢ + 1 distinct values @; to obtain
q
qT(Ta g) < Z N(rv 1, © (g D a‘j)) - N(?“, 1L, o g) + S*(Ta g) (57)
§=0

outside an exceptional set of finite logarithmic measure. Since ¢(g) > 0, the two functions 1, @ (¢ @ 0) =
—max(g,0) and 1, @ g = —g have exactly the same poles, and therefore

N(r,1c @ (g®aog)) — N(r,1o©g) =0

in the above inequality. Since T'(r, f — ) > T(r, f) —p and g ® a; = (f @ a;) — 1, we obtain the desired
estimate (5.5) for the original function f. O

Remark. We should perhaps point out here that by this corollary, nonconstant tropical meromorphic
functions of hyper-order ps < 1 and satisfying ¢(f) # —oo have no deficient values a < L(f) in the sense
that
: N(r,1lo 0 (f ®a))
1 — limsup
r—00 T(’f‘, f)

However, omitted values may well appear. For example, any linear function omits both roots and poles.
Moreover, rational functions of shape A, resp. of V, also omit roots, resp. poles. Indeed, the estimates
(5.1), (5.5) and (5.6) above do not include, in general, consideration of the roots, resp. the poles.
In fact, the counting functions N(r,1o @ f) and N(r,1o @ (f ® 0)) do not coincide in general, since
lo@f=1.0(f ®(—)). Therefore, 1, @ f and 1, @ (f ® 0) do not coincide in general. Note also that
m(r,1o @ (f ®0)) =0, since 1, @ (f®0) = —f+ <0, hence N(r,1, @ (f®0)) =T(r,1o @ (f ®0)) =
T(r f)— max( £(0), 0) by the first main theorem, Theorem 3.2, for any tropical meromorphic function f.
On the other hand, to get N(r,1o @ f) = T(r, ) — max(f(0),0), we need to have £(f) > 0.

=0.

To illustrate these comments, consider the linear function f(xz) = x+1, taking r large enough, and ¢ = 1,
a; =0 and ¢ > 0. Then we have L(f) = ¢(f) = +o0 and

N(T’f):N(Ta10®f):N(r’f($+c)):N(T,lon(l“f‘C))EO.

Moreover, T'(r, f) = m(r, f) = %1, T(T7 f(x-l-C)) = m(ﬁ f(x—l—c)) = % and m(ra f(a:—i—c)@f(x)) =c
Therefore, (5.1) takes the form

r+1< c+1

y =t
while (5.5) in Corollary 5.3 becomes
r+1 _r
< _ g
5 =35 +O(r®)

for any € > 0.

Finally, we remark that the assumption ps < 1 above cannot be deleted. To see this, the reader may
consider the above-mentioned tropical hyper-exponential functions e, . In particular, such a function may
have uncountably many deficient values.

Remark. The estimate (5.1) given in Theorem 5.1 may indeed be written in the form

Zm(r,lo o (f @ak)) < m(r, 1, © f(x—|—c)) +m (r,@f(a:—l—c)@ (f(m) EBak)) +0(1). (5.8)

k=1 k=1

This is an obvious tropical counterpart to the classical inequality

Zm(r, 1/(f(z) — ak)) < m(r, l/f’(z)) +m (r,; f(zf;(i)ak> +0(1),

k=1

see e.g. [8], 32-33. On the other hand, Theorem 5.2 and Corollary 5.3 are reminiscent of the classical
second main theorem.

In order to prove Theorem 5.1, we prepare a sequence of lemmas.
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Lemma 5.4. For anyp € N, any ap € R (1 <k <p) and any ¢ € R\ {0}, we have

m(r,10® ® f®ar) ) ST(r,f(x—Fc))—N(r,lo®f(x—|—c))+
k=1

wm(nfaroe (R e w)) - 1.

Proof. Note that

p

Lo (XR(foa) =(1lo0 flz+c)® (f(a:+c)® (®(f€9ak)))-

=1 k=1
Since m(r,g ® h) < m(r,g) + m(r, h), we have

P
m<rvlo® ®f@ak >
= P
< m(r,lo®f(x+c))+m< (x+c¢) ®f@ak >

= T(r,f(ac+c))—f(()—|—c)—N(r,lo®f(x—|—c))—|—m( (z+c) ®f€aak )
k=1

by using Jensen’s formula. a

The following inequality is important below as a replacement to the usual partial fraction decomposition
applied in the proof of the classical Second Main Theorem:

Lemma 5.5. For anyp € N, any ar, € R (1 <k <p), and for by :=1, © (®j¢k(aj ®ay)) (1<k<p),

we have
p p

Lo Qo) <Pbro@ea), (5.9)

k=1 k=1
for any x € R.

Proof. Inequality (5.9) is equivalent to

Zmax(x,ak) > 1rgnkigp max(z, ar) + #kaax(aj,ak) . (5.10)
j

Here, we may assume without loss of generality
ap < az < - < ap.
Case i): Suppose first that < a;. Then
max(z,ar) = ap (1 <k <p)

and thus the left-hand side of (5.10) becomes Y »_, ay, while the right-hand side of (5.10) becomes

P
min | ax + ( —1a + E a; —a—l—g a; E a
1<k< k k J 1 J s k>

<p Parwt
also. Hence (5.10) holds in this case.
Case ii): If ap—1 < x < ag for some 2 < £ < p, then

[ (1<k<i-1)
max(®,ak) =9 o (1< k< p)

Thus the left-hand side of (5.10) becomes

(£-1 x+Zak> Z aj—ﬁ—Zakua],

1<5<0-1
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which is not less than the right-hand side of (5.10). In fact, the latter is the minimum of the set
P P
m—i—Zaj, ey x+ (0 =2)ap—1 + Z a;, ag+ (£ —1)a; + Z @y oee s Zaj ,
=2 1<j<p +1<j<p j=1
which verifies (5.10) in this case.
Case iii): If a, < z, then we have
max(z,ap) =2 (1<k<p).

The left-hand side of (5.10) is now pz, while the right-hand side of (5.10) becomes

P
1r<nki£1p{x+(k Dag + A;rlaj} <z+((k-1z+(p—k)xz=pzx,
j=

proving the remaining case of (5.10). O
Lemma 5.6. For any p € N and any ar, € R (1 <k <p) and any c € R\ {0}, we have

[ ste -0 (@ 2a0))

Sm<r,@(f(x+c)®(f(x)®ak))>+( —1) max (1 © (Lo © ay))-

Proof. First, applying Lemma 5.5, we see

f(x—f—c)@(é(f(m)@ak)) < flz+e) (@bk® EB%))

k=1

- Bieras (o (@ e w)}

= {0+ (b - max(f(o)ar))
= i, o+ (S 4 —max(i@) o))}
< s {100 @ o)} + D1+ 00 (1) o).

j#k k=1
Note

s S o} )

< {(p -1) gggp(—%)ﬁ <(p-1) gggp(—akﬁ

(10 @ man})

ik

I
~
IAE
A
@N

By monotonicity of m(r, %), the asserted inequality follows from the definition of the proximity function.
O

Remark. Observe that f(z+¢) @ (f(z) D a) < f(z +c) © f(z) for each a € R.

Lemma 5.7. For any p € N and any ar, € R (1 <k < p), we have

T(T, 1,0 (é(f @ ak))> m(r, Lo (®h_(fe ak))> + N(n 1o © (é(f ® ak)))
T(rn QU v ar)) - é 0) @ ax)

p
k=1 k=1
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Proof. We may apply the tropical Jensen formula to the function F'(z) :=

above identity. Note that
P

F(0) = Q) (£(0) ® ax) = > max(f(0),ax).
k=1

k=1

Lemma 5.8. For any p € N and any a, € R (1 < k < p), we have
P

N(r, 1, @ (®(f@ak))) <Y N1l o (f dar)).
k=1

k=1

P_,(f @ ay) to obtain the

Proof. First, recall the linearity of wy(x) at each point = with respect to f, that is,

Wy () = w(x) + wn(2) .
Therefore,
max{wgin(x),0} < max{wy(z),0} + max{ws(z),0}
for any x € R, and so n(t,g + h) < n(t,g) + n(t, h) for any r. Hence,
N(r,g®h) < N(r,g) + N(r,h)
holds for any r. The desired inequality now follows from
p

Lo (Q(f ®ar) =— zp:f@ak Z{l o(f®ay)} = ®{1 o(foar)}.

k=1

Lemma 5.9. For any p € N and any a, € R (1 < k < p), we have
p

T(r7®(f@ak)) <pT +Zmax aka

k=1

Proof. A straightforward reasoning by using T'(r,g ® h) < T(r,g) + T(r,h) and T(r,g & h) < T(r,g) +

T(r, h) directly confirms that
P

P P
T(r, (f@ak)) < ZT Jf @ ag) SZ JrTrak)}
k=1 k=1

k=1
= pT(T, f) + Z max(ak’ O) ’
k=1
since T'(r,a) = m(r,a) = max(a,0) for any constant a € R.

In order to show a related reversed inequality to Lemma 5.9, we first prove the following

Lemma 5.10. For any p € N and any ar, € R (1 <k < p), we have

P
max {Z max(f, ak)),p max(aq, ..., ap)} =p max(f, max(aq, ... ,ap)) ,

k=1
that is,
k=1 k=1
Proof. If f <max(ay,...,ap), then
P

Zmax(f, ar) < p max(ai,...,ap),
k=1
while if f > max(a1,...,ap), then
P
Z max(f,ar) > p max(ai,...,ap)
k=1

The assertion immediately follows.

<é(f@ak)> @ <éak)®p = (f@ (éak)>®p.
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As an application of Lemma 5.10, we obtain

Lemma 5.11. For any p € N and any ar € R (1 < k < p) with all ay, < Li(f), we have

P

T(r, (fe ak)) >pT(r,f)—p 1211?)( max(ag,0) .
k=1

Proof. By Lemma 5.10 together with T'(r, g®?) = pT(r, g), we have

7 (n (@ oa) o (@ )) ~r7(ns ()

k=1

Clearly,

( ro (@) = mnd).
k=1
while »
N(rfo (@) ) =N
k=1
holds, since @)_, ar, = max(ay,...,a,) < L(f).

On the other hand, since T'(r,g ® h) < T(r,g) + T(r, h), we have

P P P P
T( (® f®ar)) @ ) < (f@ak)>+pT(r,@ak)
k=1 =1 k=1 =1
Recalling again

P
T(r,@ak> = max((rlglgicak),O)) = max max(ag,0),

1<k<p
k=1
we obtain .
>
T(“@(f @ak)> +p 1rélkaécpmaX(azc,0) >pT(r,[),

k=1
as desired. [

Remark. We now have the estimate

P
T(r,Q(f ®ax)) —pT(r, f)| <p rg%%maX(ak,O) :
k=1 -
under the assumption max(as,...,a,) < L(f). Therefore, T(r,@%_;(f ® ar)) = pT(r, f) whenever
ar < 0 for each k = 1,...,p. This may seem a bit curious. Recall, however, the assumption a; < L(f)

and its strong consequence N (r, f @ ax) = N(r, f) for each k.
Proof of Theorem 5.1. It follows by combining Lemmas 5.4, 5.6 and 5.7 - 5.11 above that

T(r,f(x+¢) —N(r,loo f(z+ c)) +m(r, f(z+c) f(z)) — flc)
> pT(r, f)—z N(r,1.0(f®ar)) Zmax —p mgxpmax(ak,O)—(p—l) 11;1}3;{}9111&){(0, —ag),

and therefore

pT(r, f) < ZN(’/‘, 1o © (feaak)) —l—T(r,f(x—i—c)) — N(r,lO @f(a:+c)) +m(7‘,f(x+c) @f(a:))

~
Il
-

Z maX —|— D mgx max(ag,0) + (p— 1) 11%11?%(17 max (0, —ag), (5.1)

completing the proof.
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6. TROPICAL HYPER-EXPONENTIAL FUNCTIONS

We consider certain special tropical meromorphic functions, which are reminiscent to hyper-exponential
functions exp(z°) over the usual algebra.
Definition 6.1. Let a be a real number with |«| > 1. Define a function e, (z) on R by

z]—1

ea(z) = 0l (z — [2]) + [Z o =l (x—[x]—l— ! ) .

a—1

j=—0c0
Then we see

Proposition 6.2. The function e, (z) is tropical meromorphic on R satisfying
o e(m)=am/(a—1) for each m € Z,
e e.(z) =x+ L5 for any x €10,1), and

[0

e the functional equation y(z + 1) = y(x)®* on the whole R.

In a similar way, for a real number with || < 1, we consider a function

es@) = S F-fla-)= S F 41—z ) = o (1—x+[x1) .
j=l[z] Jj=[z]+1

Then we similarly obtain

Proposition 6.3. This function eg(x) is also tropical meromorphic on R and satisfies
o eg(m)=p"/(1— ) for each m € Z,
o eg(x)=—x+ ﬁ for any x € [0,1), and
e the functional equation y(x + 1) = y(z)®” on the whole R.

As for the connection between e, () with |a] > 1 and eg(x) with |5] < 1, we obtain

Proposition 6.4. Suppose o # +1. Then

o ey(—1x) = éel/a(x), and

e ¢, (0) = Le1/0(0).
Remark. The slopes of e, () range over the infinite set {a’ | — 0o < j < 400} for all o # +1.
Proposition 6.5. The function e, (), o # 1, is of infinite order and, in fact, of hyper-order one.
Remark. Observe that if v > 1, then e, (z) Ga > 0 for any a € R. This shows that m(r, 1o @ (eq ®a)) =
m(r, —(ea ®a)) =0, so that T'(r,1o @ (eq ® a)) = N(r,1o @ (ea ® a)). On the other hand, if o < —1,
then e, (7) has a zero of multiplicity a®/ (1 — 1/a) at each even integer = 2j and a pole of multiplicity

a¥ (1 — a) at each odd integer © = 2j + 1, since w_ (m) = a™(1 — 1/a) for each m € Z. Thus we see
that when 20 <t < 2(¢ + 1) for some integer ¢, that is, when ¢ = [£], then

: 2j 1 1 o? 20 1 —2¢
n(tlo@ea) = Y a¥(1-—)=(1-=)3——a”+—a

j=—t

S T e S 7 P S
a+1 ala+1) ala+1)
so that N(r,eq) > |a|"/{2a(a + 1) loga} + O(1).
As for the case of eg(x), its slopes again range over the infinite set {#7| — 00 < j < +o0o}. When
0 < 8 < 1, this function has no poles and m(r,eg) < CG~". In the case of —1 < 3 < 0, it has a pole of
multiplicity 3%/(1 — 1/8) at each even integer # = 2j and a root of multiplicity 3%/(1 — 3) at each odd
integer = 25 + 1. In particular, taking 8 = —1/2, it is immediate to obtain that

N(r,eg(z)) =2N(r,1, @ eg(z)) + O(r).

|—t

a+1|a

In order to see that the assertion of Corollary 5.3 fails for eg(z) with 8 = —1/2, take a = —1 < 0 = L(eg).
Then the roots of eg(x) @ a are the same as those of eg(z) for all z = 2j+1 > 0, while for x = 2j+1 < 0,
each such root of eg(x), having multiplicity 3% (1 — 3), splits into two roots of eg(x) @ a, with the sum
of their multiplicities being equal to 3% (1 — 3). Therefore, we have

T(r,eg(z)) = N(r,es(x)) = 2N(r, 1o @ (es(z) ® a)) + O(r). (6.1)
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More generally, the same conclusion as in (6.1) follows for all @ < 0. In particular, this means that each
a < 0 is a deficient value for eg(z) in the sense that

o N(r, 10®(eg(x)69a))
TP T(r,es(x))

1
>—=>0.
-2

7. CONCLUDING REMARKS

In [7] and [11], they give an application to determine the possible tropical meromorphic solutions to some
ultra-discrete equations.

In [12] and [11], they observe tropical counterparts of three key lemmas from Nevanlinna theory, fre-
quently applied to complex differential and difference equations, namely the Valiron—-Mohon’ko lemma,
the Mohon’ko lemma and the Clunie lemma, see e.g., respectively, [13], p. 83, [3], Lemma 2, and [14],
Theorem 6.

Possible counterparts to Cartan theory for holomorphic curves to a projective space and Nevanlinna
theory in an annulus are also under investigation.
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