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Introduction 
 Bieberbach conjecture
 Krushkal’s paper
  (i)  Main theorem
  (ii) Main idea       



  



  



  



  



  



  

Preliminary 
 Quasiconformal mapping
 Complex dilatation
 Schwarzian derivative



  

Quasiconformal mapping
 A sense preserving homeomorphism with a 

finite maximal dilatation is quasiconformal. If 
the maximal dilatations is bounded by a 
number K, the mapping is said to be K-
quasiconformal.



  



  



  



  



  



  

Schwarzian derivative
 Definition 
 Existence and uniqueness
 Norm of the schwarzian derivative
 Convergence of schwarzian derivatives



  



  



  



  



  

Models of the universal Teichmuller 
space T

1. T is the  set of the equivalence classes of For B.
2. T is the set of all normalized quasisymmetric 

fucntions.
3. T is the normalized conformal mappings.
4. T is the collection of all normalized quasidiscs.
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Normalized quasidiscs
 We call a quasidisc normalized if its 

boundary passes through the points 
0,1,infinity,and is so oriented that the 
direction from o to 1 to infinity is negtive with 
respect to the domain.



  

quasicircle
A quasicircle in the extended 
plane is the image of a circle 

under a quasiconformal mapping  
of the plane.A domain bounded by 
a quasicircle is called a quasidisc.



  

Metric of T
 T has a natural metric, we obtain this metric 

by measuring the distance between 
quasiconform mappings in terms of their 
maximal dilatations.

 Some properties
  (i) teichmuller distance and complex    

dilatation
  (ii) geodesics , contractibility, incompatibility
  



  



  

Teichmuller distance and complex 
dilatation



  

Geodesics for the teichmuller metric

 The length of an arc
 An arc is a geodesic if the length of every 

subarc is equal to the distance between the 
endpoints.

 Geodesic of T can be described explicitly 
with the help of extremal complex dilatation

 Theorem : 



  



  



  



  

Contractibility of T
 T is contractible.



  

Distance between quasisymmetric 
functions



  

Incompatibility of the group structure 
with the metric

 The topological structure and the group 
structure of X are not compatible.

 T is not a topological group.



  



  



  

Mapping into the space of 
schwarzian derivatives

 Comparison of distance
 Imbedding of T



  

Comparison of distance



  



  


