Loewner Equation and SLE: Overview

Applications of Loewner Equation

Loewner 方程式の応用について
Applications of Loewner Equation

須川 敏幸 (Toshiyuki Sugawa)

東北大学大学院情報科学研究科

2010 年 2 月 14 日
東北大学鳴子会館
Let \mathcal{O}_0 be the set of analytic germs $f(z)$ of one complex variable z with $f(0) = 0$ and let

$$\mathcal{O}_0^\times = \{ f \in \mathcal{O}_0 : f'(0) \neq 0 \}.$$
Let \mathcal{O}_0 be the set of analytic germs $f(z)$ of one complex variable z with $f(0) = 0$ and let

$$\mathcal{O}_0^\times = \{ f \in \mathcal{O}_0 : f'(0) \neq 0 \}.$$

The set \mathcal{O}_0 has a structure of semigroup concerning the composition and \mathcal{O}_0^\times becomes a subgroup.
Let \mathcal{O}_0 be the set of analytic germs $f(z)$ of one complex variable z with $f(0) = 0$ and let

$$\mathcal{O}_0^\times = \{ f \in \mathcal{O}_0 : f'(0) \neq 0 \}.$$

The set \mathcal{O}_0 has a structure of semigroup concerning the composition and \mathcal{O}_0^\times becomes a subgroup. Our main aim is to interpret the Loewner equation in the context of these structures.

Let \(f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \cdots \) be an element of \(\mathcal{O}_0^\times \). The Grunsky coefficients \(A_{m,n} \) of \(f \) are defined by

\[
\log \frac{f(z) - f(\zeta)}{z - \zeta} = \sum_{m,n=0}^{\infty} A_{m,n} z^m \zeta^n
\]

for small enough \(z, \zeta \).
Let $f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \cdots$ be an element of \mathcal{O}_0^\times. The Grunsky coefficients $A_{m,n}$ of f are defined by

$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = \sum_{m,n=0}^{\infty} A_{m,n} z^m \zeta^n$$

for small enough z, ζ.

We also consider the expansion

$$\log \frac{1}{1 - f(z) f(\zeta)} = \sum_{m,n=0}^{\infty} B_{m,n} z^m \zeta^n.$$
Grunsky-Nehari inequality

Theorem (Nehari 1953)

If $f : \mathbb{D} \to \mathbb{D}$ is univalent and $f(0) = 0$, then

$$\text{Re} \sum_{l,m=1}^{N} (A_{l,m} t_l t_m + B_{l,m} t_l \bar{t}_m) \leq \sum_{l=1}^{N} \frac{|t_l|^2}{l}$$

for $t_1, \ldots, t_N \in \mathbb{C}$.

Schiffer and Tammi extended it by using the power matrix and Loewner equation.
Grunsky-Nehari inequality

Theorem (Nehari 1953)

If $f : \mathbb{D} \rightarrow \mathbb{D}$ is univalent and $f(0) = 0$, then

$$\text{Re} \sum_{l,m=1}^{N} (A_{l,m}t_l t_m + B_{l,m}t_l \bar{t}_m) \leq \sum_{l=1}^{N} \frac{|t_l|^2}{l}$$

for $t_1, \ldots, t_N \in \mathbb{C}$.

Schiffer and Tammi extended it by using the power matrix and Loewner equation.
For $f \in \mathcal{O}_0$, we consider the expansion

$$f(z)^m = \sum_{n=1}^{\infty} [f]^m_n z^n$$

for a natural number m.

Note that $[f]^m_n = 0$ for $n < m$.

Consider the matrix $[f]$ with entries $[f]^m_n (m, n = 1, 2, \ldots)$. This is called the power matrix of f.

I. Schur (1945), Jabotinsky (1953), and so on.
For \(f \in \mathcal{O}_0 \), we consider the expansion

\[
 f(z)^m = \sum_{n=1}^{\infty} [f]^m_n z^n
\]

for a natural number \(m \). Note that \([f]^m_n = 0\) for \(n < m \).
Consider the matrix \([f]\) with entries \([f]^m_n\) \((m, n = 1, 2, \ldots)\). This is called the power matrix of \(f \).
For $f \in \mathcal{O}_0$, we consider the expansion

$$f(z)^m = \sum_{n=1}^{\infty} [f]^m_n z^n$$

for a natural number m. Note that $[f]^m_n = 0$ for $n < m$. Consider the matrix $[f]$ with entries $[f]^m_n$ ($m, n = 1, 2, \ldots$). This is called the power matrix of f.

I. Schur (1945), Jabotinsky (1953), and so on.
Let
\[f_t(z) = \sum_{k=1}^{\infty} c_k(t) z^k \]
be a solution to the (radial) Loewner equation
\[\dot{f}_t = -z \frac{1 + u(t)z}{1 - u(t)z} f'_t, \quad t \geq 0, \]
for a continuous \(u(t) \) with \(|u(t)| = 1 \). Then,
\[\sum_{k=1}^{\infty} \dot{c}_k(t) z^k = -(1 + 2 \sum_{k=1}^{\infty} u^k z^k) \sum_{k=1}^{\infty} k c_k(t) z^k. \]
Therefore,

\[\dot{c}_k(t) = -kc_k(t) - 2 \sum_{m=1}^{k-1} mu(t)^{k-m} c_m(t) \]

for \(k \geq 1. \) (In particular, \(c_1(t) = e^{-t}. \))
A simple but important observation

Note that \(f_t(z)^n \) satisfies the same Loewner equation as \(f_t(z) \).
A simple but important observation

Note that \(f_t(z)^n \) satisfies the same Loewner equation as \(f_t(z) \). Therefore, we have

\[
\dot{c}_{n,k}(t) = -kc_{n,k}(t) - 2 \sum_{m=1}^{k-1} mu(t)^{k-m} c_{n,m}(t)
\]

for \(k \geq n \), where \(c_{n,k}(t) = [f_t]^n_k \).
Note that \(f_t(z)^n \) satisfies the same Loewner equation as \(f_t(z) \). Therefore, we have

\[
\dot{c}_{n,k}(t) = -k c_{n,k}(t) - 2 \sum_{m=1}^{k-1} m u(t)^{k-m} c_{n,m}(t)
\]

for \(k \geq n \), where \(c_{n,k}(t) = [f_t]^n_k \). From these equations, Schiffer and Tammi (1971) obtained an extension of Grunsky-Nehari inequalities.
The power matrix has the following remarkable property:

\[[f \circ g] = [f][g] \]

for \(f, g \in \mathcal{O}_0 \). Also, \([\text{id}] = \text{id}\). Therefore, this gives a matrix representation of \(\mathcal{O}_0 \) and \(\mathcal{O}_0^\times \).
The power matrix has the following remarkable property:

\[[f \circ g] = [f][g]\]

for \(f, g \in \mathcal{O}_0 \). Also, \([\text{id}] = \text{id}\). Therefore, this gives a matrix representation of \(\mathcal{O}_0 \) and \(\mathcal{O}_0^\times \).

Also note that

\[n[f]^{k+1} = (k + 1) \sum_{m=1}^{n-k} m[f]_m^1 [f]_n^k [f]_{n-m}^k.\]
Lie group G and Lie algebra \mathfrak{g}

Let $G = \{[f] : f \in \mathcal{O}_0^\times\}$. Then G can be regarded as a complex Lie group of infinite dimension.
Let $G = \{ [f] : f \in \mathcal{O}_0^\times \}$. Then G can be regarded as a complex Lie group of infinite dimension. For $h \in \mathcal{O}_0$, we define $\langle h \rangle$ to be the matrix with entries

$$\langle h \rangle^m_n = \begin{cases} m [h]_{n-m+1}^1 & (m \leq n) \\ 0 & (m > n) \end{cases}$$

Then $\mathfrak{g} = \{ \langle h \rangle : h \in \mathcal{O}_0 \}$ can be identified with the Lie algebra of G. The Lie bracket is given by

$$[[h], [j]] = \langle h \rangle [j] - [j] \langle h \rangle.$$
We set $e_n = \langle z^{n+1} \rangle$ for $n \geq 0$. Then

$$[e_k, e_l] = (k - l) e_{k+l}.$$
We set $e_n = \langle z^{n+1} \rangle$ for $n \geq 0$. Then

$$[e_k, e_l] = (k - l)e_{k+l}.$$

Thus \mathfrak{g} can be regarded as the "positive part" of the Virasoro algebra with zero central charge.
Loewner ODE: \[
\frac{d}{dt} w_t = -w_t p_t(w_t).
\]

Loewner PDE: \[
\frac{d}{dt} f_t = z f_t' p_t.
\]
Matrix forms of Loewner equations

Matrix form (Schippers 2006)

$$\frac{d}{dt}[w_t] = -\langle zp_t \rangle [w_t].$$

$$\frac{d}{dt}[f_t] = [f_t] \langle zp_t \rangle$$