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Bieberbach conjecture

Bieberbach conjecture (1916)

Let f(z) = z + a2z
2 + a3z

3 + · · · be analytic and schlicht
(univalent) in the unit disk |z| < 1. Then

|an| ≤ n

for every n. Equality holds only if f is either the Koebe

function K(z) =
z

(1− z)2
= z + 2z2 + 3z3 + · · · or its

rotation e−iθK(eiθz).
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Loewner equation

History

History

L. Bieberbach (1916) |a2| ≤ 2

K. Löwner (C. Loewner) (1923) |a3| ≤ 3

Garabedian-Schiffer (1955) |a4| ≤ 4

Ozawa (1969) and Pederson (1968) |a6| ≤ 6

Pederson-Schiffer (1972) |a5| ≤ 5

L. de Branges (1985) |an| ≤ n for all n
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Loewner chain

Let f(z) = z + a2z
2 + a3z

3 + · · · be univalent in the unit disk
D = {|z| < 1} and suppose that Ω = f(D) is a single-slit
domain, namely, Ω = C− γ([0, +∞)), where γ : [0,∞) → C
is a simple arc with γ(+∞) = ∞.

Let ft : D→ C− γ([t,∞)) be the conformal homeomorphism
determined by ft(0) = 0 and f ′t(0) > 0. Note that f0 = f and
thus f ′0(0) = 1. It is easy to see that f ′t(0) is continuous and
monotone increasing in t ≥ 0. Changing the parameter if
necessary, we may assume that f ′t(0) = et.
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(original) Loewner PDE

Theorem (Loewner 1923)

Let ft(z) be as before. Then, there exists a continuous
function ζ : [0, +∞) → ∂D such that

ḟt(z) = zf ′t(z)
ζ(t) + z

ζ(t)− z
.

Here, ḟt = ∂ft/∂t.

This is the original form of the Loewner equation (or, more
precisely, we should call it the Loewner PDE).

Note that

ft(ζ(t)) = γ(t).
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(original) Loewner ODE

By setting for a fixed z ∈ D

w(t) = f−1
t (f0(z)), t ≥ 0,

we obtain the ODE

ẇ(t) = −w(t)
ζ(t) + w(t)

ζ(t)− w(t)

with the initial condition

w(0) = z.

This is also called the Loewner equation (or, more precisely,
we should call it the Loewner ODE).
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Radial Loewner equation

Radial Loewner equation

Let γ : (0, t0) → D− {0} be a simple arc with γ(0+) = 1. Let
ft : D→ D− γ((0, t]) be the conformal homeomorphism
determined by ft(0) = 0, f ′t(0) > 0. This time, we can assume
that f ′t(0) = e−t. Then ft satisfies the radial Loewner equation

ḟt(z) = −zf ′t(z)
ζ(t) + z

ζ(t)− z

for a continuous function ζ(t) with |ζ(t)| = 1.
Note also that

ft(ζ(t)) = γ(t).
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Radial Loewner ODE

By setting for a fixed z ∈ D
w(t) = f−1

t (z), t ≥ 0,

we obtain the ODE

ẇ(t) = w(t)
ζ(t) + w(t)

ζ(t)− w(t)

with the initial condition

w(0) = z.

Let Tz be the lifetime of the solution to the above ODE. Then

{z ∈ D : Tz > t} = D− γ((0, t]).
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Chordal Loewner equation

Denote by H the upper half-plane {z ∈ C : Im z > 0}. Let
γ : (0, t0) → H be a simple arc with γ(0+) ∈ R. Let
ft : H→ H− γ((0, t]) be the conformal homeomorphism with
hydrodynamic normalization ft(z) = z + O(1/z) as z →∞ in
H. Let ft(z) = z + b(t)/z + O(1/z2). Here, b(t) > 0 is a sort
of capacity of γ((0, t]). This time, by a suitable
re-parametrization, we can assume that b(t) = 2t. Then ft

satisfies the chordal Loewner equation

ḟt(z) =
2f ′t(z)

U(t)− z

for a continuous real-valued function U(t).
Note also that

ft(U(t)) = γ(t).
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SLEκ

SLEκ

Let Bt be 1-dimensional Brownian motion and let κ ≥ 0 be a
constant.
Ths (chordal) SLEκ is the random families of conformal maps
gt obtained as the solutions to the equation

ġt(z) =
2

gt(z)−√κBt

, g0(z) = z.

(gt is conformal homeomorphism of {z ∈ H : Tz > t} onto H.)
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Scaling limit of discrete processes

Scaling limit of discrete processes

The following observation was made by Schramm:

If a model from statistical physics behaves in a conformally
invariant way in the scaling limit, then the law of the
interfaces converges to that of SLEκ for a suitable κ.
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Special cases

Special cases

κ = 2: loop-erased random walk and the uniform
spanning tree

κ = 8/3: self-avoiding random walk

κ = 3: interfaces for the Ising model

κ = 4: Gaussian free field

κ = 6: percolation exploration process on the triangular
lattice
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