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1 Introduction

When I was a graduate student, I was recommended to read
carefully the book “Lectures on quasiconformal mappings”written

by professor Ahlfors. Every chapter of this book is quite in-
teresting and specially I was fascinated with Chapter V, i.e.,

the existence problem of q.c. mappings with a given Beltrami
diffrential.

Problem. Let µ ∈ L∞(C) = L∞(Ĉ) (Ĉ = C ∪ {∞}) with

‖µ‖∞ < 1. Construct the homeomorphism f : C → C (or
f : Ĉ → Ĉ with f(∞) = ∞) satisfying 3 conditions,

(i) distributional derivatives fz, fz ∈ L2
loc(C)

(ii) fz = µfz(Beltrami equation)
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(iii) f(0) = 0, f(1) = 1, f(∞) = ∞.

As you konow that the unique solution exists. We denote it

by
fµ.

Many matehmaticians tried to solve this problem and I do not
know precisely who gave first a correct answer. However in the

book, professor Ahlfors gave an elegant method of construction
by making use of a singular integral operator, nowadays called

Ahlfors-Beurling operator.
Let us recall the method of construction of fµ by Ahlfors

and Bers, which is described in the book. Then I can explain a
motivation of this research work.

2 Ahlfors-Bers construction

We need two integral operators. First one is defined by

P0h(z) :=
1

2πi

∫ ∫
C

zh(t)

t(t − z)
dt ∧ dt, h ∈ Lp(C), 2 < p < ∞.

Note that dt∧dt = −2idt1dt2. For each z ∈ C the integarl in the

right side of the equation converges. Second one is a so-called
singular integral operator defined by

T0h(z) := lim
ε→0

1

2πi

∫ ∫
C

h(t)

(t − z)2 dt∧dt, h ∈ Lp(C), 1 < p < ∞.

Recently T0 is called the Ahlfors-Beurling operator. For almost
all z ∈ C the limit in the right side of the equation coverges.
Operator T0 is a bounded linear operator of Lp(C) into itself.

We have

Cp = sup
06=h∈Lp(C)

‖T0h‖p

‖h‖p
→ 1 as p → 2.
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Operator P0 and T0 have nice properties. Equalities

(P0h)z = T0h, (P0h)z = h for h ∈ Lp(C), 2 < p < ∞
hold in the sense of distribution.

Suppose that the solution f = fµ can be expressed in a form

f(z) = z + P0h(z)

for some h ∈ Lp(C), 2 < p < ∞. Then we have

fz = 1 + T0h, fz = h

in the sense of distribution. Thus we have

h = fz = µfz = µ(1 + T0h)

and hence
(1 − µT0)h = µ.

For the moment we suppose

‖µ‖∞ <
1

Cp

(since Cp → 1 as p → 2, this holds for all p sufficiently close to 2)

and
µ ∈ Lp(C) for some p ∈ (2,∞).

Then since

the operator norm ‖µT0‖ ≤ ‖µ‖∞‖T0‖ = ‖µ‖∞Cp < 1,

the equation
(1 − µT0)h = µ
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can be invertible by the Neumann series expansion,

fz = h =
∞∑

n=0

(µT0)
nµ

and hence

f(z) = z + P0h(z) = z +
∞∑

n=0

P0((µT0)
nµ)(z).

Also we can prove f is a automorphism of Ĉ satisfies all of the

desired properties except

f(1) = 1.

By noramlization we have

Theorem A If µ ∈ L∞(C) satisfies

‖µ‖∞ <
1

Cp
and µ ∈ Lp(C)

for some p ∈ (2,∞), then

fµ(z) =
z +

∑∞
n=0 P0((µT0)

nµ)(z)

1 +
∑∞

n=0 P0((µT0)nµ)(1)
.

By making use of the above theorem, we can construct fµ as
follows,

1 Suppose suppµ is compact. In this case since µ ∈ Lp(C) for
all p ∈ (1,∞), we can construct fµ by the above theorem.

2 Suppose 0 6∈ suppµ. In this case put

µ̃(z) :=
(z

z

)2
µ

(
1

z

)
.
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Then suppµ̃ is compact and we can construct f µ̃. Also we can
prove

fµ(z) =
1

f µ̃(1/z)
.

by calculating the Beltrami coefficient of the right hand side of
the equation.

3 For general µ we decompose

µ = µ1 + µ2, suppµ1 is compact and 0 6∈ suppµ2.

Put

λ =
µ − µ2

1 − µµ2

fµ2
z

fµ2
z

◦ (fµ2)−1.

Then ‖λ‖∞ < 1 and suppλ is compact. Finally we can prove

fµ = fλ ◦ (fµ2)−1

by calculating its Beltrami coefficient.

The method of construction of fµ is elegant, however

(i) Mapping fµ is an automorphism of Ĉ. But the construction
employ Lp(C) and T0 and P0. These are adapted to the complex

plane C, not to Ĉ.

(ii) Construction for general µ is too complicated. This casuse a
big difficulty on finding a variational formula of general order for

q.c. mappings. Later we will give a typical variational formula
for q.c. mappings as an application of our result.

Since fµ is an automorphism of Ĉ, I belive that a more global
result must exist.

3 A variant of Ahlfors-Beurling operator

Strategy
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We want to find

B : a Banach space of functions in Ĉ with L∞(C) ⊂ B
T : B → B, linear and bounded

P : an opertor acts on B
satisfying

(Ph)z = Th, (Ph)z = h in the sense of distribution

and

Ph(0) = Ph(1) = 0 ∀h ∈ B.

If we can find B, T and P , then probably we can prove

fµ
z =

∞∑
n=0

(µT )nµ

fµ(z) = z +
∞∑

n=0

P (µT )nµ(z)

for

µ ∈ L∞(C) with ‖µ‖∞ <
1

‖T‖ .

No assumption on suppµ is necessary, however we need an

extra condition ‖µ‖∞ < ‖T‖−1. To find B, T , P we start with
the following,

Theorem 1 If f is a quasiconformal automorphism of Ĉ nor-
malized by f(0) = 0, f(1) = 1 and f(∞) = ∞, and its Beltrmai

coeffcient µ satisfies ‖µ‖∞ < 1/3, then

f(z) = z +
1

2πi

∫ ∫
C

z(z − 1)fz(t)

t(t − 1)(t − z)
dt ∧ dt.(1)
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This can be derived from the Pompeiu formula

f(z) =
1

2πi

∫
|ζ|=1

f(ζ)

ζ − z
dζ +

1

2πi

∫ ∫
|ζ|<1

fζ(ζ)

ζ − z
dζ ∧ dζ,

and f(0) = 0, f(1) = 1 f(∞) = ∞. The condition ‖µ‖∞ < 1/3

guarantees absolute convergence of the integral in (1)

The foumula (1) suggests a new oprator

Ph(z) :=
1

2πi

∫ ∫
C

z(z − 1)h(t)

t(t − 1)(t − z)
dt ∧ dt

= P0h(z) − 1

2πi

∫ ∫
C

zh(t)

t(t − 1)
dt ∧ dt.

Then we have

(Ph)z = (Ph)z = h

(Ph)z = T0h − 1

2πi

∫ ∫
C

h(t)

t(t − 1)
dt ∧ dt.

So we put

Th(z) = lim
ε→0

1

2πi

∫ ∫
|t−z|>ε

{
1

(t − z)2 − 1

t(t − 1)

}
h(t) dt ∧ dt.

Then we have

(Ph)z = Th.

Thus we could get good candidates of T and P . How about

B adapted to Riemann sphere Ĉ? The easiest and natural can-
didate is

Sp(Ĉ) := the space of all Lebesgue measurable functions h on Ĉ

with ‖h‖p

Sp(Ĉ)
=

1

π

∫ ∫
C

|h(z)|
(1 + |z|2)2 dx ∧ dy < ∞.

Now we can state our theorems.
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Theorem 2 Let p ∈ (2,∞) and h ∈ Sp(Ĉ). Then

(i) Ph is Hölder continuous in C.

(ii) Th(z) exists for almost all z ∈ C and Th ∈ Sp(Ĉ). Fur-
thermore

T : Sp(Ĉ) → Sp(Ĉ) is bounded and linear

(3) The equation

(Ph)z = Th, (Ph)z = h

hold in the sense of distribution.

Put

Dp = sup
06=h∈Sp(Ĉ)

‖Th‖Sp(Ĉ)

‖h‖Sp(Ĉ)
, p ∈ (2,∞).

Then

Theorem 3 Let p ∈ (2,∞). Then for µ ∈ L∞(C) with ‖µ‖∞ <

min{1/3, 1/Dp} the expansion

fµ
z =

∞∑
n=0

(µT )nµ

holds, where the series converges absolutely in Sp(Ĉ). Further-
more the expansion

fµ(z) = z +
∞∑

n=0

P (µT )nµ(z)

hold for each fixed z ∈ C.
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4 Boundedness of the oprator T

It suffices to show,

Proposition 4 There exists a constant C(p) depending only on

p ∈ (2,∞) such that

‖Th‖Sp(C) ≤ C(p)‖h‖Sp(C), ∀h ∈ C2
c (C

∗),(2)

where C2
c (C

∗) is the space of all C2-functions h on C with h(0) =
h(1) = 0.

Sketch of Proof. For |z| ≤ 1 we have

Th(z)

= lim
ε↓0

1

2πi

∫ ∫
|t−z|<ε, |t|<2

{ 1

(t − z)2 − 1

t(t − 1)
}h(t) dt ∧ dt̄

+
1

2πi

∫ ∫
|t|>2

{ 1

(t − z)2 − 1

t(t − 1)
}h(t) dt ∧ dt̄

= T0(χD(2)h)(z) − 1

2πi

∫ ∫
|t|<2

h(t)

t(t − 1)
dt ∧ dt̄ + T ((1 − χD(2))h)(z).

We estimate Sp(D) norm of each term in the right hand side of

the above inequality. First we have

‖T0(χD(2)h)‖p
Sp(D)

=
1

π

∫ ∫
|z|≤1

|T0(χD(2)h)(z)|p
(1 + |z|2))2 dm(z)

≤ 1

π

∫ ∫
|z|≤1

|T0(χD(2)h)(z)|p dm(z)

≤ 1

π

∫ ∫
C

|T0(χD(2)h)(z)|p dm(z)
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≤ 1

π
‖T0(χD(2)h)‖p

Lp(C)

≤ Cp
p

π
‖χD(2)h‖p

Lp(C)

≤ Cp
p

π

∫ ∫
|t|<2

|h(t)|p dm(t)

≤ 25Cp
p

π

∫ ∫
|t|<2

|h(t)|p
(1 + |t|2)2 dm(t)

≤ 25Cp
p‖h‖p

Sp(C)

Next we have

|T ((1 − χD(2))h)(z)|
≤ 1

π

∫ ∫
|t|>2

∣∣∣∣ 1

(t − z)2 − 1

t(t − 1)

∣∣∣∣ |h(t)| dm(t)

≤ 1

π

∫ ∫
|t|>2

|2zt − z2 − t|
|(t − z)2t(t − 1)| |h(t)| dm(t)

≤ 1

π

∫ ∫
|t|>2

|2z − 1||t| + |z|2
(|t| − |z|)2|t||t − 1|| |h(t)| dm(t)

≤ 1

π

∫ ∫
|t|>2

3|t| + 1

|t|(|t| − 1)3 |h(t)| dm(t)

≤ 1

π

∫ ∫
|t|>2

(3|t| + 1)(1 + |t|2)2/p

|t|(|t| − 1)3

|h(t)|
(1 + |t|2)2/p

dm(t)

≤
{

1

π

∫ ∫
|t|>2

(3|t| + 1)(1 + |t|2)2/p

|t|(|t| − 1)3

}1/q

·
{

1

π

∫ ∫
|t|>2

|h(t)|p
(1 + |t|2)2 dm(t)

}1/p

≤ const.‖h‖Sp(C).

Thus we have

‖T ((1 − χD(2))h)‖Sp(D) ≤ const.‖h‖Sp(C).
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Similarly we have∣∣∣∣ 1

2πi

∫ ∫
|t|<2

h(t)

t(t − 1)

∣∣∣∣ ≤ const.‖h‖Sp(C).(3)

Combining these inequalities we have

‖Th‖Sp(D) ≤ const.‖h‖Sp(C).

For |z| > 1 we have

Th(z) = T h̃(1/z) − 2zP h̃(1/z),

where

h̃(z) =
(z

z̄

)2
h(1/z).

Noting ‖h̃‖Sp(D) = ‖h‖Sp(C\D) we have

‖T h̃(1/z)‖Sp(C\D) = ‖T h̃(z)‖Sp(D) ≤ const.‖h̃‖Sp(C) = const.‖h‖Sp(C).

Next we have ‖zP h̃(1/z)‖Sp(C\D) = ‖z−1Ph̃(z)‖Sp(D) and
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1

z
P h̃(z)

=
1

2πi

∫ ∫
|t|<2

h̃(t)

t(t − z)
dt ∧ dt̄ − 1

2πi

∫ ∫
|t|<2

h̃(t)

t(t − 1)
dt ∧ dt̄

+
1

2πi

∫ ∫
|t|>2

(z − 1)h̃(t)

t(t − 1)(t − z)
dt ∧ dt̄

=
P0(χD(2)h̃)(z) − P0(χD(2)h̃)(0)

z
+ A + B(z) (say).

It is easy to see that

|A| ≤ const.‖h̃‖Sp(C) = const.‖h‖Sp(C)

‖B‖Sp(D) ≤ const.‖h̃‖Sp(C) = const.‖h‖Sp(C).

To estimate the 1st term we need a lemma on Sobolev functions,

Lemma 5 For u ∈ W 1,p(C) with p ∈ (2,∞) we have
{∫ ∫

C

∣∣∣∣u(z) − u(0)

z

∣∣∣∣
}1/p

≤ p

p − 2

{‖uz‖Lp(C) + ‖uz̄‖Lp(C)
}

.

Applying the lemma to u(z) = P0(χD(2)h̃)(z) we get∥∥∥∥∥
P0(χD(2)h̃)(z) − P0(χD(2)h̃)(0)

z

∥∥∥∥∥
Sp(D)

≤ p

p − 2

{
‖P0(χD(2)h̃)z‖Lp(C) + ‖P0(χD(2)h̃)z̄‖Lp(C)

}

=
p

p − 2

{
‖T0(χD(2)h̃)‖Lp(C) + ‖χD(2)h̃‖Lp(C)

}

≤ p

p − 2

{
Cp‖χD(2)h̃‖Lp(C) + ‖χD(2)h̃‖Lp(C)

}

≤ const.‖h̃‖Sp(C) = const.‖h‖Sp(C).
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Combining these inequalities we have

‖Th(z)‖Sp(C\D) = ‖T h̃(1/z) − 2zP h̃(1/z)‖Sp(C\D)(4)

= ‖T h̃(z) − 2z−1Ph̃(z)‖Sp(D)

≤ ‖T h̃‖Sp(D) + 2‖z−1Ph̃‖Sp(D) ≤ const.‖h‖Sp(C)

Finally we have by (3) and (4)

‖Th‖Sp(C) ≤ ‖Th‖Sp(D) + ‖Th‖Sp(C\D) ≤ const.‖h‖Sp(C)(5)

5 Application on variational formula for qa-

siconfromal mappings

Suppose that µt = tµ1 + t2µ2 + · · ·, where the series converges

absolutely in L∞(C) = S∞(Ĉ). The Ahlfors-Bers theorem as-
serts that if µt varies holomorphically on t, then fµt varies also

holomorphically on t. Thus we have

fµt(z) = z + tA1(z) + t2A2(z) + · · · .(6)

Since we have from Theorem 3

fµt(z) = z + Pµt(z) + P (µtT )µt(z) + · · ·
= z + tPµ1(z) + t2Pµ2(z) + t2Pµ1Tµ1 + O(t3).

We can easily have

A1(z) = Pµ1(z)

A2(z) = Pµ2(z) + Pµ1Tµ1(z),
... .

Of course we can also calculate higher terms.
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