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1 Introduction

When I was a graduate student, I was recommended to read
carefully the book “Lectures on quasiconformal mappings” written
by professor Ahlfors. Every chapter of this book is quite in-
teresting and specially I was fascinated with Chapter V, i.e.,
the existence problem of q.c. mappings with a given Beltrami
diffrential.

A A

Problem. Let p € L*(C) = L>*(C) (C = CU {oo}) with
lullo < 1. Construct the homeomorphism f : C — C (or
f:C — C with f(oc0) = 00) satisfying 3 conditions,

(i) distributional derivatives f,, fz € Li (C)

(ii) fz = wuf.(Beltrami equation)



(i) £(0) = 0, /(1) = 1, f(o0) =

As you konow that the unique solution exists. We denote it
by

I

Many matehmaticians tried to solve this problem and I do not
know precisely who gave first a correct answer. However in the
book, professor Ahlfors gave an elegant method of construction
by making use of a singular integral operator, nowadays called
Ahlfors-Beurling operator.

Let us recall the method of construction of f# by Ahlfors
and Bers, which is described in the book. Then I can explain a
motivation of this research work.

2 Ahlfors-Bers construction

We need two integral operators. First one is defined by

dt Ndt, helLP 2 .
Qm// t—z A dt, € X(C), 2<p<

Note that dt Adt = —2idt dts. For each z € C the integarl in the
right side of the equation converges. Second one is a so-called
singular integral operator defined by

— lm — P
Toh(z £1—1>I(1)27TZ// t—z sdtndt, he LP(C), 1 <p < oco.

Recently Tj is called the Ahlfors-Beurling operator. For almost
all z € C the limit in the right side of the equation coverges.
Operator Tj is a bounded linear operator of LP(C) into itself.
We have

[Tohll,

0zherr@) |IPllp

C, = —1 asp—2.
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Operator Fy and T have nice properties. Equalities
(Poh)z = Tyh, (Poh)g =h for he Lp(C), 2<p<o0

hold in the sense of distribution.

Suppose that the solution f = f# can be expressed in a form
f(z) = z+ Byh(z)
for some h € LP(C), 2 < p < oco. Then we have
f:=1+Toh, fz=nh
in the sense of distribution. Thus we have
h=fz=upf. =pl+Toh)

and hence
(1 = uTo)h = p.
For the moment we suppose

1

< N
Il < &

(since C, — 1 as p — 2, this holds for all p sufficiently close to 2)

and
p € LP(C) for some p € (2, 00).

Then since
the operator norm [|uTo| < ||plool| 7]l = [[1]lCp < 1,

the equation
(1 = puTo)h = p



can be invertible by the Neumann series expansion,

I
n=0

and hence
F(2) = 2+ Pohl=) = 2+ 3 Bl(uT)" ) (2).

Also we can prove f is a automorphism of C satisfies all of the
desired properties except

f1) =1
By noramlization we have

Theorem A If p € L>®(C) satisfies

1
lill < & and s € L7(C)

p

for some p € (2,00), then
F1(2) = 2+ Y 0o Po(uTo)" 1) (2)
L+ 3200 Po((uTo) ) (1)

By making use of the above theorem, we can construct f#* as
follows,

1 Suppose suppp is compact. In this case since y € LP(C) for
all p € (1, 00), we can construct f# by the above theorem.

2 Suppose 0 ¢ suppu. In this case put



Then suppji is compact and we can construct f#. Also we can

prove
1
fH(z) = ———.
®) = 77
by calculating the Beltrami coefficient of the right hand side of
the equation.

3 For general ;1 we decompose

(L= f1 + fo, supppq is compact and 0 & suppe.
Put

— H2
Ao KT SR ey
1 — ppiz 12
Then ||A||oc < 1 and suppA is compact. Finally we can prove
fr= fro(fryt
by calculating its Beltrami coefficient.

The method of construction of f* is elegant, however

(i) Mapping f* is an automorphism of C. But the construction
employ LP(C) and Ty and Fy. These are adapted to the complex
plane C, not to C.

(ii) Construction for general p is too complicated. This casuse a
big difficulty on finding a variational formula of general order for
g.c. mappings. Later we will give a typical variational formula
for q.c. mappings as an application of our result.

Since f* is an automorphism of @, I belive that a more global
result must exist.

3 A variant of Ahlfors-Beurling operator

Strategy



We want to find

B : a Banach space of functions in C with L®(C) C B
T : B — B, linear and bounded

P : an opertor acts on B
satisfying
(Ph), =Th, (Ph);="h in the sense of distribution

and
Ph(0) = Ph(1) =0Vh € B.
If we can find B, T" and P, then probably we can prove

fE= (ul)"u
n=0
fiz)=z+ ) P(uT)"u(z)
n=0
for ]
p€ L2(C) with |[ufle < T

No assumption on supp u is necessary, however we need an
extra condition ||ull« < ||T||7!. To find B, T, P we start with

the following,

Theorem 1 If f is a quasiconformal automorphism of@ nor-

malized by f(0) =0, f(1) =1 and f(c0) = oo, and its Beltrmai

coeffcient p satisfies ||pllco < 1/3, then

Z_lfz T
1 = — dt A dt.
(1) Z+2m//(ctt—1 )t — 2) A

6




This can be derived from the Pompeiu formula

1 _

and f(0) =0, f( ) =1 f(00) = co. The condition ||u||« < 1/3
guarantees absolute convergence of the integral in (1)

The foumula (1) suggests a new oprator

2—1 _
Ph = dt N dt
(2) 2%2//«;7575—1 t—z) A

t _
_ / / dt A di.
2mi ct(t—1)
Then we have

(Ph)z = (Ph)z
it [ [ 2
So we put

1 _
Th(z) = lim — — h(t) dt A dt.
61—I>% 27TZ//|t z|>e { - t(t - 1)} ( ) :

Then we have

dt A dt.

(Ph). = Th.

Thus we could get good candidates of 7" and P. How about
B adapted to Riemann sphere C? The easiest and natural can-
didate is

SP (@) := the space of all Lebesgue measurable functions h on C

ith ||h||” sdr Nd :
with || ”S // 1—|—]z] r A\dy < oo

Now we can state our theorems.
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Theorem 2 Let p € (2,00) and h € SP(C). Then
(i) Ph is Hélder continuous in C.

(i) Th(z) exists for almost all z € C and Th € S*(C). Fur-
thermore

T : SP(C) — SP(C) is bounded and linear

(3) The equation

(Ph), =Th, (Ph)z=h
hold in the sense of distribution.
o 7]
D, = sup 751)(@, p € (2,00).
0#£heSrP(C) Hh||5,,(©
Then

Theorem 3 Letp € (2,00). Then for pp € L>(C) with ||p]|~ <
min{1/3,1/D,} the expansion

= (uT)"u
n=0

holds, where the series converges absolutely in Sp(@). Further-
more the expansion

f(z) = 24> P(uT)"u(z)

hold for each fixed z € C.



4 Boundedness of the oprator T

It suffices to show,

Proposition 4 There exists a constant C(p) depending only on
p € (2,00) such that

(2) ITAls0c) < COllswcy, VR € C(TY),

where C*(C*) is the space of all C*-functions h on C with h(0) =
h(1) = 0.

Sketch of Proof. For |z| <1 we have

1 1 _
= hm—// Fh(t) dt A dt
el0 2mi jt—z|<e, |t|<2 (t—2)2 i(t—1)

1 _
27”//|t|>2 t—z)° t(t—1)}h(t) dihdi

= T (X]D) 271'2//|t|<2t dt A dt + T((l — XD(Q))h)(Z).

We estimate SP(ID) norm of each term in the right hand side of
the above inequality. First we have

IToCxnimh) g
1 ’TOX]D) )(2) (s
- //Qq irppe )

—//WJ%XD ()P dm(2)
[ imtwanerdnt)

VAN

VAN



IA

_HTO(X]D) )H

p
?HXD(Q)h”]Z/p(C)

=y |t|<2!h(t)!pdm(t)
250p//|t|<2 Hm -

25C3 |11l c

IA

IA

IN

IN

Next we have

[ T((1 = X2 )h)(Z)\

< //H|>2 i 1)|]h(t)]dm(t)
N ')||h< ) dm(t)

= //m>2 \zlejzz T;Hjmlzlgu!h(t)!dm(t)

- //|t|>2|t\3:i;t1 In{e)] dm)

= //|t|>2 - ;\ It\1—+1’)t|2)2/p(1th(tﬂy)% dmt)

< const.HhHSp
Thus we have
IT((1 = xp(2))h) |l sy < const. |||l
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Similarly we have

1 h(t)
S < Al ey
n / / mw_l)\ < const. |l s

Combining these inequalities we have

(3)

|Th||spmy < const. ||h|| g c)-
For |z| > 1 we have
Th(z) = Th(1/z) — 2zPh(1/2),

where

- PN

h(z) = (—) h(1/2).

z

Noting ||;LHS;D(]D)) = Hh”SP((C\]D)) we have
HTB(I/,Z)HSIJ(@\D) = HTil(Z)HSp(]D)) < const.HizHSp(@) = const. ||h||sr(c)-

Next we have HzPil(l/z)ng((c\D) = \|2_1PB(Z)’|SP(D) and
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—Ph

= // dmdt——// thd{
27 |t|<2t t—Z 27 |t|<2t
Z_

1)h _
// W4t i
27m =2t —1)(t — 2)

_ Po(x2)h)(2) — Po(xm)h)(0) LA+ B(:) (say).

It is easy to see that

Al < COHSt.HiLHSp((C) = const. ||h[| ()
| Bl spmy < const.||h||sp(c) = const.||h|sn(c)

To estimate the 1st term we need a lemma on Sobolev functions,

Lemma 5 For u € W'P(C) with p € (2,00) we have

wulz) — 0) 1/]7 p
U/ 1< 2 e + sl
C p

Applying the lemma to u(z) = PO(XD(Q)E)(z) we get

PO(XD(Q)E)(Z) - PO(XD(Q)B)(O)

5P(D)
< — {HPO(XD(Q)h)ZHLP((C) + HPo(XD(z)il)zHLp(@}

IToCen@ )l vie) + Ixne Pl §

Cylxme k| e Allosie }
5 { Gl + Ixoehlime

< const. || Al s(c) = const. || Al se(c)

3
(\)

|
'@

'B |
/—’H

g~

p—2

IA
'B
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Combining these inequalities we have
Dh(2)lsnevpy = IITh(1/2) = 22Ph(1/2)||src\p)
= |[Th(z) — 22_1Ph(Z)H51)(D)
< HThHSP(]D)) + 2”2_1Ph‘|5’p(]]))) < COIlSt.HhHSp((C)

Finally we have by (3) and (4)

(5) ITR||spcy < [ Thllsrmy + [|Th]|src\p) < const. ||h]| g )

5 Application on variational formula for qa-
siconfromal mappings

Suppose that p; = tu; + t2p9 + - - -, where the series converges
absolutely in L>(C) = S°(C). The Ahlfors-Bers theorem as-
serts that if u; varies holomorphically on ¢, then f#* varies also
holomorphically on t. Thus we have

(6) ff(2) = 2+ tA(2) + 7 As(2) +
Since we have from Theorem 3

ff(z) = 24+ Pw(z) + P(uD)pe(2) + - - -
= 2+ tPui(2) + t*Pus(2) + t*Pu Ty + O(t3).

We can easily have

Ai(z) = Pm(z)
Ax(2) = Pua(z) + PunTi(2),

Of course we can also calculate higher terms.
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