QUASICONFORMAL EXTENSIONS OF A CIRCLE-HOMEOMORPHISM

KEIICHI SHIBATA

Letting A, and A, denote the unit closed disk in the z- and w-plane respectively, we
consider an orientation- preserving homeomorphism ~(6) of JA, onto 9A,,. Some (#) may
admit extension up to quasiconformal homeomorphisms of Int A, onto Int A,,, the totality of
which shall be denoted by I'q. On the other hand, some () may be extensible up to an ACL?-
mapping f(z) of Int A, onto Int A,,, whose Dirichlet integral

Blf) = / / PPy (= ati)

is finite, totality of which shall be denoted by I'g. By the way we denote such extension of ~
by Dxt[v].
Proposition 1.

I'q CIg.

Proof. Taking an arbitrary element +(8) out of ', let us denote by f(z) a q. c. extension
of y(6). Note that f~!(w) is K-quasiconformal in Int A,, under the assumption that f(z) is
K-quasiconformal in Int A,. Hence for the dilatation Q¢ (%) of f(z) we have

™

2 (Kf + [if) = ;//Inmw Q1 (w) + (1/Qp-1(w))ldudv  (w = u+iv)
//Int AZ[|pf(z)|2 + |gp(2)]?)dzdy,

where K stands for the maximal dilatation in the interior of the disk. O

(1)

Lemma 1. Suppose that a real-valued periodic function p(6) is defined on the 6-interval I =
[0,27] so as to be p(0) = w(2m) satisfying the Lipschitz condition

[p(01) — p(62)] < [61 — 0o

on I. Then for an arbitrary positive constant ¢ < 1, the function ®(0) = 0+ cp(0) is a strongly
monotone-increasing function on I which belongs to the class Lip 1.

Theorem 1. There exists at least one orientation-preserving homeomorphism v(0) of A, onto
0A,, which posesses the following properties:

(1°) v(0) is prolongable up to an ACL? orientation-preserving continuous map f(z) of Int A,
onto Int A,,.

(2°) f(2) has finite Dirichlet integral over Int A, .

Proof. If we set y(6) = exp{i®(#)}, then v(#) provides a homeomorphism of dA, onto A,
(Lemma 1). Abel mean

f(re) = % + Z(an cosnb + by, sinnf)r"
n=1
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of Fourier expansion

ap > .
v(0) = 5 + nzl(an cosnb + by, sinnh)

is harmonic in Int A, and Radé-Kneser-Choquet’s theorem together with Lemma 1 assure
that f(z) maps A, topologically onto A,. Since nla,| < 27, nlb,| < 27(n = 1,2,...) and
oo 1 (Jan| + |bn|) < 400, we have finally

(oo}

E[f(2)] = wZn(|an\2 + b |?) < +o00. O

n=1

Now let v be an arbitrary element of I'y. The family Dxt[y] is normal and any minimizing
sequence for the functional E[f] contains a subsequence {f,(z)} uniformly convergent on A,:
Put f*(2) = lim,— oo fn(z). We must have

Blf] = lm E[f,

= inf F
feDxt[y] [f]

in virtue of the lower semi-continuity of Dxt[y] together with the compactness of Dxt[y] in
the topology of uniform convergence on A,. Let H denote the aggregate of C*°-function h(z)
vanishing outside the open disk Int A .

Definition 1 (Gerstenhaber-Rauch’s variation). We call
E[f"(z +¢eh(2))] — E[f(2)]
to be Gerstenhaber-Rauch’s variation of the Dirichlet energy functional F[f(z)] at f = f*.
The Gerstenhaber-Rauch variation of E[f] at f = f* referring to h(z) of H reads

E[f*] — E[f*] = 4Re{e //1 N pr-qf~hzdxdy} + o(e).

Since E[f(z)] stagnates at f = f*, Green’s theorem provides us with the following relations:

0= // Preqp~hzdedy = 7{ psqr-h(z)dz — // [pf*ﬁ}zh(z)dxdy
Int A, OA Int A,
= — // [Df=q5=5 h(z)dxdy.
Int A,

In view of arbitrariness of h(z) in the interior to A, we must have

%pf* (2)g*(2) =0 in Int A,.

Remark 1. So far as the present questions on Dirichlet functional E[f(z)] is concerned, the
Gerstenhaber-Rauch variation

E[f(z+eh(2))] - E[f(2)]

vanishes if and only if the Euler-Lagrange variation

E[f(2) +eh(2)] = E[f(2)]

vanishes.
Theorem 2. There exists a harmonic homeomorphism f*(z) belonging to Dxt[y].

Proof. The harmonic mapping f*(z) obtained above gives a homeomorphism between the disks
in question.

Corollary 1. The quadratic differential wy«(z) = pg-(2)qs(2)dz? is holomorphic in Int A,.
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Suppose that two members of the trajectories 7 = {wy+ > 0} as well as two members of
the orthogonal trajectories O = {wy- < 0} determine a certain curvilinear quadrilateral €2, in
Int A, whose conformal image shall be the rectangle

R.={(z,y)] 0 <z <a,0<y<b}.
In a similar manner let a univalent holomorphic function w = ¥(¢) map the rectangle
Re={(¢m]0<¢<a,0<n<p}
in the ¢ = £ 4 in-plane onto the curvilinear quadrilateral €, = f*(£2.) so that the horizontal
and vertical sides of R, and R may correspond to each other.
Let S denote the subclass of Dxt[y] that sends §2, onto ,,. Then we are allowed to adopt

the following identifications: The element S(z) of the class S is a continuous mapping of R,
onto R¢ which is ACL? in its interior, and we write

A= | / 14/ (Q) 2 Ips |? + s ?)ddy.

in terms of weighted Dirichlet integral of the rectangular mapping S(z).

Proposition 2. The restriciton So(z) of the mapping f*(z) to Q. minimizes the funcitonal
// W (OPlIps|* + lgs[*ldzdy
within the subfamily S.

Proposition 3. The family S is convez.

Proof. Indeed, for any S;(z) (j = 1,2) of S and a real parameter t ranging over the interval
[0, 1], the linear combination ¢S7(z) + (1 — t)S2(2) belongs to S.

Definition 2. E*[S(z)] defined on § is said to be stationary at Sp(z) if the Euler-Lagrange’s
first variation of E*[S(z)] vanishes at S = Sy.

Theorem 3. If E*[S(2)] is stationary at one point S = Sy of S, then Sy gives a local minimum

to E*[S(z)] on S.
Proof. ~Take an arbitrary element S(z) of S. For any real parameter ¢ ranging over the interval
(0,1),50(z) = (1 —t)Sp(2) + tS(2) belongs to S (Proposition 3). For any ¢ € (0,1) we have
E*[So] — E*[So]
t
— @+ 0B [S0] +E°[S] +2 [ Re{ps, 55 + as, a8} v/ (O Py
R

< (-2 B[S0l + ¢E°(8)+ 2 [ [ (pslps] +lasollasD)v' (O Pdody.
R
Letting t # 0 tend to 0, we obtain by assumtion that

dE"[Sy(2)]

0=
dt

t=0
< —2E7([So] + 2/ . V(Ips, 2 + las, P (Ips]? + lasP) W' (¢) P dwdy

< —2E*[So] + 2¢/E*[So| E*[S]

Hence

E*[So] < E*[S],
and the equality sign in the last relation enters only when S(z) = Sp(z). In other words,
S(z) # So(z) implies E*[S] > E*[Sy]. O
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Definition 3. Let H; denote the subfamily of H which vanishes identically outside 2.

Definition 4 (harmonic mapping). An element S(z) of S is called harmonic relative to the
conformal metric ds? = [¢/(¢)|?|d¢|? iff the quadratic differential ©g = [¢'(¢)|*ps(2)gs(2)dz? is
holomorphic in Int R, .

Definition 5. If an ACL? topological mapping f(z) defined in a neighbourhood U on the
z-plane is expressed in a composite form conformal o affine o conformal, so f(z) is called to be
locally Teichmdiller in U.

Proposition 4. Any locally Teichmiiller mapping is harmonic.

Proof. Let f(z) be locally Teichmiiller. Then the quadratic differential wy = ps(2)qy(2)d2? is
holomorphic. U

Proposition 5. The affine linear mapping ¢ = T(z) of R, onto R endows the weighted
Dirichlet integral E*[S(z)] with its absolute minimum in the family S.

Proof. Since the mapping ¢ o T'(z) is locally Teichmiiller in the interior to R, by definition,
its characteristic arcs coincide with the trajectories of the holomorphic quadratic differential
or = [ (O)Ppr(2)qr(2)dz%. Operating the Gerstenhaber-Rauch variation z — ¢ = z + eh(2)
with h(z) belonging to H; to obtain T'(z) = T'(%), we have

I - BTG = Rele [[ 10/ Por(ar(lhedady) + ofe).

It follows with the aid of the boundary behaviour of h(z) that

E*[T(z)] _ _//R 10/ (2) 2pr(2)qr (2)]sh(2) dady
=0

i B -
e—0 9

which shows that the weighted Dirichlet integral E*[S(z)] stagnates at S(z) = T'(z). Therefore
T(z) attains the minimum E*[T(z)] on S (Theorem 5). O

Theorem 4. If the weighted Dirichlet integral E*[S(z)] stagnates at some point Sy(z) of the
family S, then it holds that So(z) = T(z).

Proof. First note that we have E*[S(z)] > E*[Sp] for all S(z) # So(z) (Proposition 4). Hence
So # T'(z) implies E*[T'(z)] > E*[So], while the Proposition 5 asserts that E*[T'(z)] < E*[So]
leading to a contradiction.

Our next aim is to prove the inverse inclusion to Propositon 1. To this end we fix an arbitrary
element v of I'g and take an element f(z) of Axt[y] such that E[f] < +oo. Then we shall agree
to say that the f belongs to the class Dxt[y]. Letting h(z) be an ACL2-function vanishing on
OA., we shall distort f into f(z) = f(z + eh(z)). Under the assumption that some f*(z) of
Dxt[] is a stationary point for E[f], we have

o(e) = 4Re {5 // pf*qf*hz} dxdy.
Int A,

Green’s theorem affords that
// (pr+G)zh(2)dzdy = 0. (3)
Int A,

The last relation (4) shows holomorphy of the quadratic differential wy- = pf*ﬁdzz, what
amounts to the same thing to say that the mapping f*(z) is harmonic in the interior of A,.

Back to the pair of curvilinear quadrilaterals 2, and Q,, we see that f*(z) maps Q, onto €,
quasiconformally with a constant dilatation.
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Suppose the circumstance that the interior of two characteristic quadrilaterals € and €’ like
Q. is not disjoint with one another. Then we see that the constant dillatation of f*(z) in
these two quadrilaterals ©Q and Q' shares the value K. It is concluded that f*(z) possesses the

constant dilatation
1| /N2 1] 2
K=-|(-) —- [~
-]

throughout Int A, with possible exception of a discrete subset, where wy« vanishes. We shall
have to mention about the behaviour of f*(z) in a neighbourhood of possible zeros of the
differential wg« = pp-gp-dz®. Let 2o be the zero point of wys- of degree m > 1. Then the
2m + 1 members of 7 ends at this point zy with the equal angles A,, = 27/(2m + 1) (n =
1,..2m + 1). Similarly, the 2m + 1 members of O ends at the same point zo forming the equal
angles B, = 2n/(2m + 1) (n = 1,...,2m + 1), where every member of A, is bisected by a
certain member of B,,; and conversely every member of B,, is bisected by a certain member of
Ay (nyn' =1,..2m+1).

The harmonic homeomorphism f*(z) put the trajectories 7 (resp.the orthogonal trajecto-
ries O) to the orthogonal trajectories O’ (resp. trajectories 7') of f*~! into correspondence.
Therefore the mapping f*(z) is conformal at every posssible zero of wy«. We may conclude
that f*(z) is a Teichmiiller map: Thus we have proved

Proposition 6. I'r C I'g.
From Propositions 1 and 5 follows
Theorem 5. I'g =T'g.

Remark 2. The above Theorem 5 is the disk version of Beurling-Ahlfors quasiconformal exten-
sion theorem (cf. [1]), which provides, together with Lemma 1 a very simple sufficient condition
for quasiconformal extensibility of the peripheral homeomorphism ~ (cf. [2]).

Now note that the above argumentations deriving Theorem 5 is based upon the Gerstenhaber-
Rauch variation

z Z=2z+¢ch(z) (h(z) =0 on 0A,). 4)

We are allowed to choose a distortion other than (3) using h(z) vanishing everywhere on
an upper half-disk surrounded partly by a characteristic cross-cut. The stationary funciton
in this case gives also a quasiocnformal homeomorphism of Int A, onto Int A, with constant
dilatations K and K’ on the upper and lower half disk respectively, where it holds however that
K+ K'.

Theorem 6. For a given circumferential homeomorphism ~y, the extremal quasiconformal
homeomorphism of the disk Int A, onto another such Int A, is not unique

(ct. [3)).
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