QUASICONFORMAL EXTENSIONS OF A CIRCLE-HOMEOMORPHISM

KEIICHI SHIBATA

Letting Δ_z and Δ_w denote the unit closed disk in the z- and w-plane respectively, we consider an orientation- preserving homeomorphism $\gamma(\theta)$ of $\partial \Delta_z$ onto $\partial \Delta_w$. Some $\gamma(\theta)$ may admit extension up to quasiconformal homeomorphisms of Int Δ_z onto Int Δ_w , the totality of which shall be denoted by Γ_Q . On the other hand, some $\gamma(\theta)$ may be extensible up to an ACL²mapping f(z) of Int Δ_z onto Int Δ_w , whose Dirichlet integral

$$E[f] = \iint_{\text{Int }\Delta_z} [|f_z|^2 + |f_{\overline{z}}|^2] dx dy \qquad (z = x + iy)$$

is finite, totality of which shall be denoted by $\Gamma_{\rm E}$. By the way we denote such extension of γ by ${\rm Dxt}[\gamma]$.

Proposition 1.

$$\Gamma_{\rm Q} \subseteq \Gamma_{\rm E}$$

Proof. Taking an arbitrary element $\gamma(\theta)$ out of $\Gamma_{\mathbf{Q}}$, let us denote by f(z) a q. c. extension of $\gamma(\theta)$. Note that $f^{-1}(w)$ is K-quasiconformal in $\operatorname{Int} \Delta_w$ under the assumption that f(z) is K-quasiconformal in $\operatorname{Int} \Delta_z$. Hence for the dilatation $Q_f(z)$ of f(z) we have

$$\frac{\pi}{2} \left(K_f + \frac{1}{K_f} \right) \ge \frac{1}{2} \iint_{\text{Int } \Delta_w} [Q_{f^{-1}}(w) + (1/Q_{f^{-1}}(w))] du dv \qquad (w = u + iv)
= \iint_{\text{Int } \Delta_z} [|p_f(z)|^2 + |q_f(z)|^2] dx dy,$$
(1)

where K_f stands for the maximal dilatation in the interior of the disk.

Lemma 1. Suppose that a real-valued periodic function $\varphi(\theta)$ is defined on the θ -interval $I = [0, 2\pi]$ so as to be $\varphi(0) = \varphi(2\pi)$ satisfying the Lipschitz condition

$$|\varphi(\theta_1) - \varphi(\theta_2)| \le |\theta_1 - \theta_2|$$

on I. Then for an arbitrary positive constant c < 1, the function $\Phi(\theta) = \theta + c\varphi(\theta)$ is a strongly monotone-increasing function on I which belongs to the class Lip 1.

Theorem 1. There exists at least one orientation-preserving homeomorphism $\gamma(\theta)$ of $\partial \Delta_z$ onto $\partial \Delta_w$ which possesses the following properties:

(1°) $\gamma(\theta)$ is prolongable up to an ACL² orientation-preserving continuous map f(z) of Int Δ_z onto Int Δ_w .

 $(2^{\circ}) f(z)$ has finite Dirichlet integral over Int Δ_z .

Proof. If we set $\gamma(\theta) = \exp\{i\Phi(\theta)\}$, then $\gamma(\theta)$ provides a homeomorphism of $\partial \Delta_z$ onto $\partial \Delta_w$ (Lemma 1). Abel mean

$$f(re^{i\theta}) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)r^n$$

Key words and phrases. Dirichlet integral, Teichmüller map.

2000 Subject Classification. Primary 30C70. Secondary 31A25.

Date: (Read on 8th January, 2003).

of Fourier expansion

$$\gamma(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

is harmonic in $\operatorname{Int} \Delta_z$ and Radó-Kneser-Choquet's theorem together with Lemma 1 assure that f(z) maps Δ_z topologically onto Δ_w . Since $n|a_n| \leq 2\pi, n|b_n| \leq 2\pi(n = 1, 2, ...)$ and $\sum_{n=1}^{\infty} (|a_n| + |b_n|) < +\infty$, we have finally

$$E[f(z)] = \pi \sum_{n=1}^{\infty} n(|a_n|^2 + |b_n|^2) < +\infty. \quad \Box$$

Now let γ be an arbitrary element of $\Gamma_{\rm E}$. The family $\operatorname{Dxt}[\gamma]$ is normal and any minimizing sequence for the functional E[f] contains a subsequence $\{f_n(z)\}$ uniformly convergent on Δ_z : Put $f^*(z) = \lim_{n \to \infty} f_n(z)$. We must have

$$E[f^*] = \lim_{n \to \infty} E[f_n]$$
$$= \inf_{f \in \text{Dxt}[\gamma]} E[f]$$

in virtue of the lower semi-continuity of $Dxt[\gamma]$ together with the compactness of $Dxt[\gamma]$ in the topology of uniform convergence on Δ_z . Let \mathcal{H} denote the aggregate of C^{∞} -function h(z)vanishing outside the open disk Int Δ_z .

Definition 1 (Gerstenhaber-Rauch's variation). We call

$$E[f^*(z + \varepsilon h(z))] - E[f^*(z)]$$

to be Gerstenhaber-Rauch's variation of the Dirichlet energy functional F[f(z)] at $f = f^*$.

The Gerstenhaber-Rauch variation of E[f] at $f = f^*$ referring to h(z) of \mathcal{H} reads

$$E[\tilde{f^*}] - E[f^*] = 4 \operatorname{Re}\{\varepsilon \iint_{\operatorname{Int}\Delta_z} p_{f^*} \overline{q_{f^*}} h_{\overline{z}} dx dy\} + o(\varepsilon).$$

Since E[f(z)] stagnates at $f = f^*$, Green's theorem provides us with the following relations:

$$0 = \iint_{\operatorname{Int}\Delta_{z}} p_{f^{*}} \overline{q_{f^{*}}} h_{\overline{z}} dx dy = \oint_{\partial \Delta_{z}} p_{f^{*}} \overline{q_{f^{*}}} h(z) dz - \iint_{\operatorname{Int}\Delta_{z}} [p_{f^{*}} \overline{q_{f^{*}}}]_{\overline{z}} h(z) dx dy$$
$$= -\iint_{\operatorname{Int}\Delta_{z}} [p_{f^{*}} \overline{q_{f^{*}}}]_{\overline{z}} h(z) dx dy.$$

In view of arbitrariness of h(z) in the interior to Δ_z we must have

$$\frac{\partial}{\partial \overline{z}} p_{f^*}(z) \overline{q^*(z)} \equiv 0 \qquad \text{in Int } \Delta_z.$$

Remark 1. So far as the present questions on Dirichlet functional E[f(z)] is concerned, the Gerstenhaber-Rauch variation

$$E[f(z + \varepsilon h(z))] - E[f(z)]$$

vanishes if and only if the Euler-Lagrange variation

$$E[f(z) + \varepsilon h(z)] - E[f(z)]$$

vanishes.

Theorem 2. There exists a harmonic homeomorphism $f^*(z)$ belonging to $\text{Dxt}[\gamma]$.

Proof. The harmonic mapping $f^*(z)$ obtained above gives a homeomorphism between the disks in question.

Corollary 1. The quadratic differential $\omega_{f^*}(z) = p_{f^*}(z)\overline{q_{f^*}(z)}dz^2$ is holomorphic in Int Δ_z .

Suppose that two members of the trajectories $\mathcal{T} = \{\omega_{f^*} > 0\}$ as well as two members of the orthogonal trajectories $\mathcal{O} = \{\omega_{f^*} < 0\}$ determine a certain curvilinear quadrilateral Ω_z in Int Δ_z whose conformal image shall be the rectangle

$$R_z = \{(x, y) | \ 0 \le x \le a, 0 \le y \le b\}.$$

In a similar manner let a univalent holomorphic function $w = \psi(\zeta)$ map the rectangle

$$R_{\zeta} = \{(\xi, \eta) \mid 0 \le \xi \le \alpha, 0 \le \eta \le \beta\}$$

in the $\zeta = \xi + i\eta$ -plane onto the curvilinear quadrilateral $\Omega_w = f^*(\Omega_z)$ so that the horizontal and vertical sides of R_z and R_{ζ} may correspond to each other.

Let S denote the subclass of $Dxt[\gamma]$ that sends Ω_z onto Ω_w . Then we are allowed to adopt the following identifications: The element S(z) of the class S is a continuous mapping of R_z onto R_{ζ} which is ACL² in its interior, and we write

$$E^*[S(z)] = \iint_{R_z} |\psi'(\zeta)|^2 [|p_S|^2 + |q_S|^2] dx dy.$$

in terms of weighted Dirichlet integral of the rectangular mapping S(z).

Proposition 2. The restriction $S_0(z)$ of the mapping $f^*(z)$ to Ω_z minimizes the functional

$$E^*[S(z)] = \iint_{\Omega_z} |\psi'(\zeta)|^2 [|p_S|^2 + |q_S|^2] dxdy$$

within the subfamily \mathcal{S} .

Proposition 3. The family S is convex.

Proof. Indeed, for any $S_j(z)$ (j = 1, 2) of S and a real parameter t ranging over the interval [0, 1], the linear combination $tS_1(z) + (1 - t)S_2(z)$ belongs to S.

Definition 2. $E^*[S(z)]$ defined on S is said to be *stationary* at $S_0(z)$ if the Euler-Lagrange's first variation of $E^*[S(z)]$ vanishes at $S = S_0$.

Theorem 3. If $E^*[S(z)]$ is stationary at one point $S = S_0$ of S, then S_0 gives a local minimum to $E^*[S(z)]$ on S.

Proof. Take an arbitrary element S(z) of S. For any real parameter t ranging over the interval $(0,1), \tilde{S}_0(z) = (1-t)S_0(z) + tS(z)$ belongs to S (Proposition 3). For any $t \in (0,1)$ we have

$$\begin{split} & \frac{E^*[\tilde{S}_0] - E^*[S_0]}{t} \\ &= (2+t)E^*[S_0] + tE^*[S] + 2 \iint_R \operatorname{Re}\{\mathbf{p}_{S_0}\overline{\mathbf{p}_S} + \mathbf{q}_{S_0}\overline{\mathbf{q}_S}\} |\psi'(\zeta)|^2 \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{y} \\ &\leq (-2+t)E^*[S_0] + tE^*[S] + 2 \iint_R (|p_{S_0}||p_S| + |q_{S_0}||q_S|) |\psi'(\zeta)|^2 \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{y}. \end{split}$$

Letting $t \neq 0$ tend to 0, we obtain by assumption that

$$0 = \frac{dE^*[S_t(z)]}{dt} \bigg|_{t=0}$$

$$\leq -2E^*[S_0] + 2 \iint_R \sqrt{(|p_{S_0}|^2 + |q_{S_0}|^2)(|p_S|^2 + |q_S|^2)} |\psi'(\zeta)|^2 dx dy$$

$$\leq -2E^*[S_0] + 2\sqrt{E^*[S_0]E^*[S]}.$$
(2)

Hence

$$E^*[S_0] \le E^*[S],$$

and the equality sign in the last relation enters only when $S(z) \equiv S_0(z)$. In other words, $S(z) \neq S_0(z)$ implies $E^*[S] > E^*[S_0]$.

KEIICHI SHIBATA

Definition 3. Let \mathcal{H}_1 denote the subfamily of \mathcal{H} which vanishes identically outside Ω_z .

Definition 4 (harmonic mapping). An element S(z) of S is called *harmonic* relative to the conformal metric $ds^2 = |\psi'(\zeta)|^2 |d\zeta|^2$ iff the quadratic differential $\tilde{\omega}_S = |\psi'(\zeta)|^2 p_S(z) \overline{q_S(z)} dz^2$ is holomorphic in $\operatorname{Int} R_z$.

Definition 5. If an ACL² topological mapping f(z) defined in a neighbourhood U on the z-plane is expressed in a composite form *conformal* \circ *affine* \circ *conformal*, so f(z) is called to be *locally Teichmüller* in U.

Proposition 4. Any locally Teichmüller mapping is harmonic.

Proof. Let f(z) be locally Teichmüller. Then the quadratic differential $\omega_f = p_f(z)\overline{q_f(z)}dz^2$ is holomorphic.

Proposition 5. The affine linear mapping $\zeta = T(z)$ of R_z onto R_{ζ} endows the weighted Dirichlet integral $E^*[S(z)]$ with its absolute minimum in the family S.

Proof. Since the mapping $\psi \circ T(z)$ is locally Teichmüller in the interior to R_z by definition, its characteristic arcs coïncide with the trajectories of the holomorphic quadratic differential $\tilde{\omega}_T = |\psi'(\zeta)|^2 p_T(z) \overline{q_T(z)} dz^2$. Operating the Gerstenhaber-Rauch variation $z \mapsto \zeta = z + \varepsilon h(z)$ with h(z) belonging to \mathcal{H}_1 to obtain $\tilde{T}(z) = T(\tilde{z})$, we have

$$E^*[\tilde{T}(z)] - E^*[T(z)] = \operatorname{Re}\left\{\varepsilon \iint_{R_z} [|\psi'(\zeta)|^2 p_T(z)\overline{q_T(z)}]h_{\overline{z}}dxdy\right\} + o(\varepsilon)$$

It follows with the aid of the boundary behaviour of h(z) that

$$\lim_{\varepsilon \to 0} \frac{E^*[\overline{T}(z)] - E^*[T(z)]}{\varepsilon} = -\iint_{R_z} [|\psi'(z)|^2 p_T(z)\overline{q_T(z)}]_{\overline{z}} h(z) dx dy$$
$$= 0,$$

which shows that the weighted Dirichlet integral $E^*[S(z)]$ stagnates at S(z) = T(z). Therefore T(z) attains the minimum $E^*[T(z)]$ on S (Theorem 5).

Theorem 4. If the weighted Dirichlet integral $E^*[S(z)]$ stagnates at some point $S_0(z)$ of the family S, then it holds that $S_0(z) = T(z)$.

Proof. First note that we have $E^*[S(z)] > E^*[S_0]$ for all $S(z) \neq S_0(z)$ (Proposition 4). Hence $S_0 \neq T(z)$ implies $E^*[T(z)] > E^*[S_0]$, while the Proposition 5 asserts that $E^*[T(z)] \leq E^*[S_0]$ leading to a contradiction.

Our next aim is to prove the inverse inclusion to Propositon 1. To this end we fix an arbitrary element γ of $\Gamma_{\rm E}$ and take an element f(z) of $\operatorname{Axt}[\gamma]$ such that $E[f] < +\infty$. Then we shall agree to say that the f belongs to the class $\operatorname{Dxt}[\gamma]$. Letting h(z) be an ACL²-function vanishing on $\partial \Delta_z$, we shall distort f into $\tilde{f}(z) = f(z + \varepsilon h(z))$. Under the assumption that some $f^*(z)$ of $\operatorname{Dxt}[\gamma]$ is a stationary point for E[f], we have

$$o(\varepsilon) = 4 \operatorname{Re} \left\{ \varepsilon \iint_{\operatorname{Int} \Delta_{z}} p_{f^*} \overline{q_{f^*}} h_{\overline{z}} \right\} dxdy.$$

Green's theorem affords that

$$\iint_{\text{Int }\Delta_z} (p_{f^*} \overline{q_{f^*}})_{\overline{z}} h(z) dx dy = 0.$$
(3)

The last relation (4) shows holomorphy of the quadratic differential $\omega_{f^*} = p_{f^*} \overline{q_{f^*}} dz^2$, what amounts to the same thing to say that the mapping $f^*(z)$ is harmonic in the interior of Δ_z .

Back to the pair of curvilinear quadrilaterals Ω_z and Ω_w we see that $f^*(z)$ maps Ω_z onto Ω_w quasiconformally with a constant dilatation.

Suppose the circumstance that the interior of two characteristic quadrilaterals Ω and Ω' like Ω_z is not disjoint with one another. Then we see that the constant dillatation of $f^*(z)$ in these two quadrilaterals Ω and Ω' shares the value K. It is concluded that $f^*(z)$ possesses the constant dillatation

$$K = \frac{1}{4} \left[\left(\frac{\alpha}{a}\right)^2 - \left(\frac{\beta}{b}\right)^2 \right]$$

throughout Int Δ_z with possible exception of a discrete subset, where ω_{f^*} vanishes. We shall have to mention about the behaviour of $f^*(z)$ in a neighbourhood of possible zeros of the differential $\omega_{f^*} = p_{f^*} \overline{q_{f^*}} dz^2$. Let z_0 be the zero point of ω_{f^*} of degree $m \ge 1$. Then the 2m + 1 members of \mathcal{T} ends at this point z_0 with the equal angles $A_n = 2\pi/(2m + 1)$ (n =1, ..2m + 1). Similarly, the 2m + 1 members of \mathcal{O} ends at the same point z_0 forming the equal angles $B_n = 2\pi/(2m + 1)$ (n = 1, ..., 2m + 1), where every member of A_n is bisected by a certain member of $B_{n'}$ and conversely every member of B_n is bisected by a certain member of $A_{n'}$ (n, n' = 1, ..., 2m + 1).

The harmonic homeomorphism $f^*(z)$ put the trajectories \mathcal{T} (resp. the orthogonal trajectories \mathcal{O}) to the orthogonal trajectories \mathcal{O}' (resp. trajectories \mathcal{T}') of f^{*-1} into correspondence. Therefore the mapping $f^*(z)$ is conformal at every possible zero of ω_{f^*} . We may conclude that $f^*(z)$ is a Teichmüller map: Thus we have proved

Proposition 6. $\Gamma_E \subseteq \Gamma_Q$.

From Propositions 1 and 5 follows

Theorem 5. $\Gamma_Q = \Gamma_E$.

Remark 2. The above Theorem 5 is the disk version of Beurling-Ahlfors quasiconformal extension theorem (cf. [1]), which provides, together with Lemma 1 a very simple sufficient condition for quasiconformal extensibility of the peripheral homeomorphism γ (cf. [2]).

Now note that the above argumentations deriving Theorem 5 is based upon the Gerstenhaber-Rauch variation

$$z \mapsto \tilde{z} = z + \varepsilon h(z) \qquad (h(z) \equiv 0 \text{ on } \partial \Delta_z).$$
 (4)

We are allowed to choose a distortion other than (3) using h(z) vanishing everywhere on an upper half-disk surrounded partly by a characteristic cross-cut. The stationary function in this case gives also a quasioenformal homeomorphism of $\operatorname{Int} \Delta_z$ onto $\operatorname{Int} \Delta_w$ with constant dilatations K and K' on the upper and lower half disk respectively, where it holds however that $K \neq K'$.

Theorem 6. For a given circumferential homeomorphism γ , the extremal quasiconformal homeomorphism of the disk Int Δ_z onto another such Int Δ_w is not unique

(cf. [3]).

References

- A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956) pp.125-142.
- [2] Th. M. Rassias and K. Shibata, *Teichmüller extensibility of circle homeomorphisms*, Complex Variables 47(2002), pp.679-706.
- [3] K. Shibata, Stationary functions for Dirichlet's energy functional, preprint.
- K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises I, Comment. Math. Helv. 36 (1962), pp.306-323.

KEIICHI SHIBATA

 [5] _____, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises II, Comment. Math. Helv. 39 (1964), pp.77-89

International Institute for Natural Sciences, 11-30 Kawanishi-machi, Kurashiki 710-0821, Japan E-mail address: iins@kis.ous.ac.jp

6