
QUASICONFORMAL EXTENSIONS OF A CIRCLE-HOMEOMORPHISM

KEIICHI SHIBATA

Letting ∆z and ∆w denote the unit closed disk in the z- and w-plane respectively, we
consider an orientation- preserving homeomorphism γ(θ) of ∂∆z onto ∂∆w. Some γ(θ) may
admit extension up to quasiconformal homeomorphisms of Int ∆z onto Int ∆w, the totality of
which shall be denoted by ΓQ. On the other hand, some γ(θ) may be extensible up to an ACL2-
mapping f(z) of Int ∆z onto Int∆w, whose Dirichlet integral

E[f ] =
∫∫

Int ∆z

[|fz|2 + |fz|2]dxdy (z = x+ iy)

is finite, totality of which shall be denoted by ΓE. By the way we denote such extension of γ
by Dxt[γ].

Proposition 1.
ΓQ ⊆ ΓE.

Proof. Taking an arbitrary element γ(θ) out of ΓQ, let us denote by f(z) a q. c. extension
of γ(θ). Note that f−1(w) is K-quasiconformal in Int ∆w under the assumption that f(z) is
K-quasiconformal in Int∆z. Hence for the dilatation Qf (z) of f(z) we have

π

2

(
Kf +

1
Kf

)
≥ 1

2

∫∫
Int ∆w

[Qf−1(w) + (1/Qf−1(w))]dudv (w = u+ iv)

=
∫∫

Int ∆z

[|pf (z)|2 + |qf (z)|2]dxdy,
(1)

where Kf stands for the maximal dilatation in the interior of the disk. �

Lemma 1. Suppose that a real-valued periodic function ϕ(θ) is defined on the θ-interval I =
[0, 2π] so as to be ϕ(0) = ϕ(2π) satisfying the Lipschitz condition

|ϕ(θ1)− ϕ(θ2)| ≤ |θ1 − θ2|

on I. Then for an arbitrary positive constant c < 1, the function Φ(θ) = θ+ cϕ(θ) is a strongly
monotone-increasing function on I which belongs to the class Lip 1.

Theorem 1. There exists at least one orientation-preserving homeomorphism γ(θ) of ∂∆z onto
∂∆w which posesses the following properties:

(1◦) γ(θ) is prolongable up to an ACL2 orientation-preserving continuous map f(z) of Int ∆z

onto Int ∆w.
(2◦) f(z) has finite Dirichlet integral over Int ∆z.

Proof. If we set γ(θ) = exp{iΦ(θ)}, then γ(θ) provides a homeomorphism of ∂∆z onto ∂∆w

(Lemma 1). Abel mean

f(reiθ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ)rn
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of Fourier expansion

γ(θ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ)

is harmonic in Int ∆z and Radó-Kneser-Choquet’s theorem together with Lemma 1 assure
that f(z) maps ∆z topologically onto ∆w. Since n|an| ≤ 2π, n|bn| ≤ 2π(n = 1, 2, ...) and∑∞

n=1(|an|+ |bn|) < +∞, we have finally

E[f(z)] = π
∞∑

n=1

n(|an|2 + |bn|2) < +∞. �

Now let γ be an arbitrary element of ΓE. The family Dxt[γ] is normal and any minimizing
sequence for the functional E[f ] contains a subsequence {fn(z)} uniformly convergent on ∆z:
Put f∗(z) = limn→∞ fn(z). We must have

E[f∗] = lim
n→∞

E[fn]

= inf
f∈Dxt[γ]

E[f ]

in virtue of the lower semi-continuity of Dxt[γ] together with the compactness of Dxt[γ] in
the topology of uniform convergence on ∆z. Let H denote the aggregate of C∞-function h(z)
vanishing outside the open disk Int ∆z.

Definition 1 (Gerstenhaber-Rauch’s variation). We call

E[f∗(z + εh(z))]− E[f∗(z)]

to be Gerstenhaber-Rauch’s variation of the Dirichlet energy functional F [f(z)] at f = f∗.

The Gerstenhaber-Rauch variation of E[f ] at f = f∗ referring to h(z) of H reads

E[f̃∗]− E[f∗] = 4Re{ε
∫∫

Int ∆z

pf∗qf∗hzdxdy}+ o(ε).

Since E[f(z)] stagnates at f = f∗, Green’s theorem provides us with the following relations:

0 =
∫∫

Int ∆z

pf∗qf∗hzdxdy =
∮

∂∆z

pf∗qf∗h(z)dz −
∫∫

Int ∆z

[pf∗qf∗ ]z h(z)dxdy

= −
∫∫

Int ∆z

[pf∗qf∗ ]z h(z)dxdy.

In view of arbitrariness of h(z) in the interior to ∆z we must have
∂

∂z
pf∗(z)q∗(z) ≡ 0 in Int ∆z.

Remark 1. So far as the present questions on Dirichlet functional E[f(z)] is concerned, the
Gerstenhaber-Rauch variation

E[f(z + εh(z))]− E[f(z)]

vanishes if and only if the Euler-Lagrange variation

E[f(z) + εh(z)]− E[f(z)]

vanishes.

Theorem 2. There exists a harmonic homeomorphism f∗(z) belonging to Dxt[γ].

Proof. The harmonic mapping f∗(z) obtained above gives a homeomorphism between the disks
in question.

Corollary 1. The quadratic differential ωf∗(z) = pf∗(z)qf∗(z)dz2 is holomorphic in Int ∆z.
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Suppose that two members of the trajectories T = {ωf∗ > 0} as well as two members of
the orthogonal trajectories O = {ωf∗ < 0} determine a certain curvilinear quadrilateral Ωz in
Int∆z whose conformal image shall be the rectangle

Rz = {(x, y)| 0 ≤ x ≤ a, 0 ≤ y ≤ b}.
In a similar manner let a univalent holomorphic function w = ψ(ζ) map the rectangle

Rζ = {(ξ, η)| 0 ≤ ξ ≤ α, 0 ≤ η ≤ β}
in the ζ = ξ + iη-plane onto the curvilinear quadrilateral Ωw = f∗(Ωz) so that the horizontal
and vertical sides of Rz and Rζ may correspond to each other.

Let S denote the subclass of Dxt[γ] that sends Ωz onto Ωw. Then we are allowed to adopt
the following identifications: The element S(z) of the class S is a continuous mapping of Rz

onto Rζ which is ACL2 in its interior, and we write

E∗[S(z)] =
∫∫

Rz

|ψ′(ζ)|2[|pS |2 + |qS |2]dxdy.

in terms of weighted Dirichlet integral of the rectangular mapping S(z).

Proposition 2. The restriciton S0(z) of the mapping f∗(z) to Ωz minimizes the funcitonal

E∗[S(z)] =
∫∫

Ωz

|ψ′(ζ)|2[|pS |2 + |qS |2]dxdy

within the subfamily S.

Proposition 3. The family S is convex.

Proof. Indeed, for any Sj(z) (j = 1, 2) of S and a real parameter t ranging over the interval
[0, 1], the linear combination tS1(z) + (1− t)S2(z) belongs to S.

Definition 2. E∗[S(z)] defined on S is said to be stationary at S0(z) if the Euler-Lagrange’s
first variation of E∗[S(z)] vanishes at S = S0.

Theorem 3. If E∗[S(z)] is stationary at one point S = S0 of S, then S0 gives a local minimum
to E∗[S(z)] on S.

Proof. Take an arbitrary element S(z) of S. For any real parameter t ranging over the interval
(0, 1), S̃0(z) = (1− t)S0(z) + tS(z) belongs to S (Proposition 3). For any t ∈ (0, 1) we have

E∗[S̃0]− E∗[S0]
t

= (2 + t)E∗[S0] + tE∗[S] + 2
∫∫

R

Re{pS0pS + qS0qS}|ψ′(ζ)|2dxdy

≤ (−2 + t)E∗[S0] + tE∗[S] + 2
∫∫

R

(|pS0 ||pS |+ |qS0 ||qS |)|ψ′(ζ)|2dxdy.

Letting t 6= 0 tend to 0, we obtain by assumtion that

0 =
dE∗[St(z)]

dt

∣∣∣∣∣
t=0

≤ −2E∗[S0] + 2
∫∫

R

√
(|pS0 |2 + |qS0 |2)(|pS |2 + |qS |2)|ψ′(ζ)|2dxdy

≤ −2E∗[S0] + 2
√
E∗[S0]E∗[S].

(2)

Hence
E∗[S0] ≤ E∗[S],

and the equality sign in the last relation enters only when S(z) ≡ S0(z). In other words,
S(z) 6= S0(z) implies E∗[S] > E∗[S0]. �



4 KEIICHI SHIBATA

Definition 3. Let H1 denote the subfamily of H which vanishes identically outside Ωz.

Definition 4 (harmonic mapping). An element S(z) of S is called harmonic relative to the
conformal metric ds2 = |ψ′(ζ)|2|dζ|2 iff the quadratic differential ω̃S = |ψ′(ζ)|2pS(z)qS(z)dz2 is
holomorphic in IntRz.

Definition 5. If an ACL2 topological mapping f(z) defined in a neighbourhood U on the
z-plane is expressed in a composite form conformal ◦ affine ◦ conformal, so f(z) is called to be
locally Teichmüller in U .

Proposition 4. Any locally Teichmüller mapping is harmonic.

Proof. Let f(z) be locally Teichmüller. Then the quadratic differential ωf = pf (z)qf (z)dz2 is
holomorphic. �

Proposition 5. The affine linear mapping ζ = T (z) of Rz onto Rζ endows the weighted
Dirichlet integral E∗[S(z)] with its absolute minimum in the family S.

Proof. Since the mapping ψ ◦ T (z) is locally Teichmüller in the interior to Rz by definition,
its characteristic arcs cöıncide with the trajectories of the holomorphic quadratic differential
ω̃T = |ψ′(ζ)|2pT (z)qT (z)dz2. Operating the Gerstenhaber-Rauch variation z 7→ ζ = z + εh(z)
with h(z) belonging to H1 to obtain T̃ (z) = T (z̃), we have

E∗[T̃ (z)]− E∗[T (z)] = Re{ε
∫∫

Rz

[|ψ′(ζ)|2pT (z)qT (z)]hzdxdy}+ o(ε).

It follows with the aid of the boundary behaviour of h(z) that

lim
ε→0

E∗[T̃ (z)]− E∗[T (z)]
ε

= −
∫∫

Rz

[|ψ′(z)|2pT (z)qT (z)]zh(z)dxdy

= 0,

which shows that the weighted Dirichlet integral E∗[S(z)] stagnates at S(z) = T (z). Therefore
T (z) attains the minimum E∗[T (z)] on S (Theorem 5). �

Theorem 4. If the weighted Dirichlet integral E∗[S(z)] stagnates at some point S0(z) of the
family S, then it holds that S0(z) = T (z).

Proof. First note that we have E∗[S(z)] > E∗[S0] for all S(z) 6= S0(z) (Proposition 4). Hence
S0 6= T (z) implies E∗[T (z)] > E∗[S0], while the Proposition 5 asserts that E∗[T (z)] ≤ E∗[S0]
leading to a contradiction.

Our next aim is to prove the inverse inclusion to Propositon 1. To this end we fix an arbitrary
element γ of ΓE and take an element f(z) of Axt[γ] such that E[f ] < +∞. Then we shall agree
to say that the f belongs to the class Dxt[γ]. Letting h(z) be an ACL2-function vanishing on
∂∆z, we shall distort f into f̃(z) = f(z + εh(z)). Under the assumption that some f∗(z) of
Dxt[γ] is a stationary point for E[f ], we have

o(ε) = 4Re
{
ε

∫∫
Int ∆z

pf∗qf∗hz

}
dxdy.

Green’s theorem affords that ∫∫
Int ∆z

(pf∗qf∗)zh(z)dxdy = 0. (3)

The last relation (4) shows holomorphy of the quadratic differential ωf∗ = pf∗qf∗dz
2, what

amounts to the same thing to say that the mapping f∗(z) is harmonic in the interior of ∆z.
Back to the pair of curvilinear quadrilaterals Ωz and Ωw we see that f∗(z) maps Ωz onto Ωw

quasiconformally with a constant dilatation.
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Suppose the circumstance that the interior of two characteristic quadrilaterals Ω and Ω′ like
Ωz is not disjoint with one another. Then we see that the constant dillatation of f∗(z) in
these two quadrilaterals Ω and Ω′ shares the value K. It is concluded that f∗(z) possesses the
constant dilatation

K =
1
4

[(α
a

)2

−
(
β

b

)2
]

throughout Int∆z with possible exception of a discrete subset, where ωf∗ vanishes. We shall
have to mention about the behaviour of f∗(z) in a neighbourhood of possible zeros of the
differential ωf∗ = pf∗qf∗dz

2. Let z0 be the zero point of ωf∗ of degree m ≥ 1. Then the
2m + 1 members of T ends at this point z0 with the equal angles An = 2π/(2m + 1) (n =
1, ..2m+ 1). Similarly, the 2m+ 1 members of O ends at the same point z0 forming the equal
angles Bn = 2π/(2m + 1) (n = 1, ..., 2m + 1), where every member of An is bisected by a
certain member of Bn′ and conversely every member of Bn is bisected by a certain member of
An′ (n, n′ = 1, ...2m+ 1).

The harmonic homeomorphism f∗(z) put the trajectories T (resp.the orthogonal trajecto-
ries O) to the orthogonal trajectories O′ (resp. trajectories T ′) of f∗−1 into correspondence.
Therefore the mapping f∗(z) is conformal at every posssible zero of ωf∗ . We may conclude
that f∗(z) is a Teichmüller map: Thus we have proved

Proposition 6. ΓE ⊆ ΓQ.

From Propositions 1 and 5 follows

Theorem 5. ΓQ = ΓE.

Remark 2. The above Theorem 5 is the disk version of Beurling-Ahlfors quasiconformal exten-
sion theorem (cf. [1]), which provides, together with Lemma 1 a very simple sufficient condition
for quasiconformal extensibility of the peripheral homeomorphism γ (cf. [2]).

Now note that the above argumentations deriving Theorem 5 is based upon the Gerstenhaber-
Rauch variation

z 7→ z̃ = z + εh(z) (h(z) ≡ 0 on ∂∆z). (4)

We are allowed to choose a distortion other than (3) using h(z) vanishing everywhere on
an upper half-disk surrounded partly by a characteristic cross-cut. The stationary funciton
in this case gives also a quasiocnformal homeomorphism of Int ∆z onto Int ∆w with constant
dilatations K and K ′ on the upper and lower half disk respectively, where it holds however that
K 6= K ′.

Theorem 6. For a given circumferential homeomorphism γ, the extremal quasiconformal
homeomorphism of the disk Int ∆z onto another such Int ∆w is not unique

(cf. [3]).
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