POTENTIAL THEORETIC CHARACTERIZATIONS OF NONSMOOTH
DOMAINS
— A CONVERSE OF THE BOUNDARY HARNACK PRINCIPLE —
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A large number of works have been devoted to the study on potential theory for non-
smooth domains, such as Lipschitz domains, NTA domains, uniform domains, John do-
mains and Holder domains, since the pioneering works of Carleson [10] and Hunt-Wheeden
[15, 16] for Lipschitz domains. Among them, the boundary Harnack principle (abbreviated
to BHP) and the identification of the Martin boundary played a central role. See Ancona [4],
Dahlberg [11] and Wu [23] for Lipschitz domains, Jerison-Kenig [17] for NTA domains,
Bass-Burdzy [8] for Holder domains, [1] and [3] for uniform domains and uniformly John
domains. These studies are motivated to generalize the geometric conditions imposed on a
domain to guarantee potential theoretic properties, such as the boundary Harnack principle.

This paper is in the opposite direction. Namely, we shall give some potential theoretic
properties which yield geometric properties of the domain. Our conditions will be necessary
and stficient, provided the domain satisfies the capacity density condition. To be more
precise, we use the following notation. Throughout the paper w2 beta bounded domain
in R" with n > 2 and letop(x) = dist(x, dD). We write B(x, r) andS(x, r) for the open ball
and the sphere of center atand radius, respectively. By the symbd\ we denote an
absolute positive constant whose value is unimportant and may change from line to line. If
necessary, we usi, Ay, ..., to specify them. We shall say that two positive quantifies
and f, are comparable, writteh ~ f,, if and only if there exists a constaAt> 1 such that
Alf, < f, < Afy. The constanf will be called the constant of comparison.

Let us recall the definitions of some nonsmooth domains. We saiptissedJohn domain
with John constant; > 0 and John centexy € D if eachx € D can be joined tog by a
rectifiable curvey such that

(1) oo(y) 2 Cl(y(x.y)) forallyey,

wherey(x,y) and{(y(x,y)) stand for the subarc gf connectingx andy and its length, re-
spectively. In general, @ c; < 1. A John domain may be visualized as a domain satisfying
a twisted cone condition. We say tHatis auniform domainf there exist constanta and

A’ such that each pair of poinksy € D can be joined by a rectifiable curyec D such that
{(y) < Alx-yl and

(2) min{f(y(x, 2), €{(y(zy))} < Aép(2) forallzey.

See Gehring-Matrtio [13] and Vaisala [22]. If the complement of a uniform dorbain
satisfies the corkscrew condition, thBnbecomes an NTA domain (Jerison-Kenig [17]).
We define thenternal metricOp (X, y) by

Pp(x,y) = inf{diam(y) : vy is a curve connectingandy in D}

for x,y € D. Here diamy) denotes the diameter ¢f Obviously|x —y| < Pp(X,y). We

say thatD is auniformly John domairnf there exists a constait > 1 such that each pair
1
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of pointsx,y € D can be connected by a curyec D with ¢(y) < APp(X,y) and (2). By
definition a uniformly John domain is a domain intermediate between a John domain and
a uniform domain. The above definition is due to Balogh-Volberg [6, 7]. Bonk-Heinonen-
Koskela [9] called a uniformly John domain amer uniformdomain and showed an inner
uniform domain is a Gromov hyperbolic domain.

Now we consider potential theoretic properties and their connections to the above non-
smooth domains.

Definition 1. We say that a domai® enjoys theuniform BHPIf there exist constants
Ao, A; > 1 andrg > 0 depending only o with the following property: Let € D and
let 0 < r < ro. Supposel andv are positive harmonic functions @hn B(&, Agr), bounded
on D N B(¢, Agr) and vanishing o@D N B(&, Agr) except for a polar set. Then

u(/uly) _

v(x)/v(y) —
In [1, Theorem 1], we proved the following.

Theorem A. A uniform domain satisfies the uniform BHP.

(3) A:, wheneverx,y € D N B(,r).

We shall give a converse of Theorem A. The definition of a uniform domain is very
sensitive about the boundary; if we remove a closed polar set from the d@m#ienD
may not be a uniform domain, whereas the uniform BHP remains to hold. So, we need
some additional assumption on the boundary in order to obtain a converse. The following
capacity density conditio(ebbreviated to CDC) is reasonable and widely known. Wet
be an open set with Green functi@y . Define the Green capacity Ggjk) for a Borel set
E cU by

Cap,(E) = sudu(E) : Gyu < 1 onU, uis a Borel measure supported Bh

In the usual way Cap(E) extends to a general sétc U.
Definition 2. We say that the CDC holds if there exist constakts 1 andry > 0 such that

Capy.2n(B(, 1) \ D) . 1
Capyeon(BE1) — A

Remarkl. If D satisfies the CDC, theb is regular and the assumption ofandv for
the BHP becomes thatandv are positive and harmonic db N B(&, Agr) and continu-
ously vanish o@D N B(&, Aor). In the sequel, we assume the CDC and use this simplified
assumption.

Ancona [5, Lemma 3] showed that the CDC has an equivalent condition in terms of
harmonic measure. We write(-, E, U) for the harmonic measure over an opendebf
E c 9U. Then the CDC holds if and only if there exist constghts 0, A > 1 andrg > 0
such that

whenevet € 9D and O< r < ry.

o\
4) w(x D N SEr),DNBEr) < A('X r 5') for xe D N B(&, 1),
whenevek € 9D and O< r < ro. See also [2] for the connection to the Dirichlet problem.
Under the assumption of the CDC, we can characterize a John domain, a uniform domain
and a uniformly John domain in terms of potential theoretical properties.
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Theorem 1. Let D satisfy the CDC. Then D is a John domain if and only if there exist
constantsy > 0, A> 1 and ry > such that

op(X)
r

(5) w(x,D NS 1), DN BE ) > %( ) for x € D N B, iA),

wheneveg € 9D and0 < r < rq.
The following theorem includes a converse of Theorem A.

Theorem 2. Let D satisfy the CDC. Then D is a uniform domain if and only if the uniform
BHP and(5) hold.

Remark2. Jerison-Kenig [17] developed a fruitful potential theory on an NTA domain,
including the BHP and the CE. An NTA domain can be regarded as a uniform domain with
the corkscrew condition of the complement. The requirement of the complement, needed
for the construction of a uniform barrier, may be replaced by a more general condition,
CDC. Thus the arguments of Jerison-Kenig remain to hold for a uniform domain with CDC.
Our Theorem 2 asserts its converse, i.e., if a domain enjoys the CDC, the BHP and (5),
then it must be a uniform domain. On the other hand, Theorem A does not rely on a
uniform barrier and, as a result, it is valid for a uniform domain without CDC. Theorem
A was derived in a spirit of Bass-Burdzy [8] rather than by the method of Jerison-Kenig.
Characterization of a uniform domain without CDC remains open.
Remark3. Uniform domains are known to b@ce domains of analysis appearing in many
contexts (Jones [18, 19], Gehring [12], Gotoh [14], Bonk-Heinonen-Koskela [9]), although
their boundaries may be very complicated. Our characterization provides another example
of this nature. See also Smith-Stegenga [20] and Stegenga-Ullrich [21] for characterizations
of a Holder domain, a domain satisfying the quasihyperbolic metric condition.

A ball with respect to the internal metric becomes a connected component of the inter-
section of a Euclidean ball and the domain ([3, Lemma 2.2]). So, we arrive at the following
version of the uniform BHP, which is a property weaker than the uniform BHP.

Definition 3. We say that a domaib enjoys theuniform BHPwith respect to the internal
metric if there exist constants, Az > 1 andrg > 0 depending only o® with the following
property: Le¥ € 0D, 0 < r < ro, U aconnected componentDNB(&, r) andV a connected
component oD N B(¢, Aor) includingU. Supposel andv are positive harmonic functions
onV vanishing oD N gV. Then

u()/ue) _
v()/v(y)
In [3, Theorem 3.1], we proved the following.

Theorem B. A uniformly John domain satisfies the uniform BHP with respect to the internal
metric.

The following characterization includes a converse of Theorem B.

Theorem 3. Let D satisfy the CDC. Then D is a uniformly John domain if and only if the
uniform BHP with respect to the internal metric af&) hold.

It is known that a finitely connected planar domain without singleton boundary compo-
nents satisfies the CDC. Hence we have the following corollaries.

Corollary 1. Let D be a bounded finitely connected planar domain. Then D is a John
domain if and only if(5) holds.

Az, wheneverxy e U.
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Corollary 2. Let D be a bounded finitely connected planar domain. Then D is a uniform
domain if and only if the uniform BHP an@) hold.

Corollary 3. Let D be a bounded finitely connected planar domain. Then D is a uniformly
John domain if and only if the uniform BHP with respect to the internal metric(&nkold.
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